当前位置:文档之家› 隧道贯通测量报告

隧道贯通测量报告

隧道贯通测量报告
隧道贯通测量报告

新建合福铁路安徽段站前四标

闻家山隧道贯通测量报告

1、前言

隧道贯通面接合处的偏差可以分解为空间的三个方向,即沿隧道中心线的长度偏差,为纵向贯通误差;垂直于隧道中心线的左右偏差,为横向贯通误差;还有高程贯通误差。纵向贯通误差只对贯通在距离上有影响,对隧道的质量没有影响,而后两种方向上的偏差对隧道质量有直接影响。

2、工程概述

新建合福铁路安徽段站前四标的闻家山隧道,位于安徽省铜陵县境内,隧道洞身穿越区为低山丘陵区,地形起伏较大,进、出口山坡较陡峭。隧道里程为DK154+980~DK155+280,全长300m,为双线隧道。隧道位于R=8000m 的左偏曲线上,为大断面单洞室双线结构。开挖施工采用新澳法,从隧道进口向出口单向开挖,其中进出口洞门DK154+980~DK155+035与 DK155+247~DK155+280段为明挖段。

3、贯通误差测量

3.1贯通测量方案

(1)隧道开挖控制测量说明

闻家山隧道施工采用从进口单向掘进的方法。隧道DK154+980~

DK155+247开挖的控制测量采用全站仪从进口GPS控制测量主网边测量洞内导线点,利用电子水准仪从进口洞门水准点对洞内做二等水准控制,对隧道开挖和二次衬砌进行施工测量控制。

(2)贯通测量具体实施方案

隧道贯通前,由于DK155+247~DK155+280段为明挖段,是使用出口导线点和水准点测量控制的,根据现场施工情况,实际贯通面里程为DK155+247。

平面贯通测量,用原隧道进口洞内的导线点放样出DK155+247的对应隧道中线桩,再使用隧道出口洞外的导线点,对该中线桩进行测量,分别测取桩点的平面坐标,将两组坐标分别投影到贯通面上和隧道中线上,则贯通面上的投影差值即为横向贯通误差,在中线上的投影差值即为纵向贯通误差。

高程贯通测量,采用二等水准测量方法,从隧道洞内联测进口和出口附近的水准点,得到高程不符值即为实际的竖向贯通误差。

根据《高速铁路工程测量规范》(TB 10601-2009)要求,隧道两相向开挖洞口施工中线在贯通面上的横向和高程贯通误差应符合表3-1的规定。闻家山隧道全长300m,为单向开挖施工,参照该规定要求,横向贯通误差限差为100mm,高程贯通误差限差为50mm。

表3-1 高铁隧道贯通误差规定

注:1、本表不适用于利用竖井贯通的隧道

2、相向开挖长度大于20km的隧道应作特殊设计

3.2 贯通误差的测定

(1)纵横贯通误差的测定

假定隧道贯通面DK155+247的隧道中心线点(左线右侧2.5m)为L0,理论坐标为X=3422097.922m,Y=512993.335m,DK155+247左线中心(设为点L1)L1理论坐标为X=3422100.1239m,Y=512994.5194m,对应切线方位角为118度16分27.53秒(设为A0方向)。建立贯通面坐标系:以L1为原点,A0方向为X轴正方向,垂直于A0方向为Y轴正向,顺时针坐标系。则L0在这个坐标系中坐标为:x=0m,y=2.5m。

使用徕卡(1201+)全站仪,由闻家山隧道进口原洞内施工控制导线点WJZD0和WJZD3,用贯通修正前坐标建站,按理论坐标放样出精度较高的L0,做好标记。再由隧道出口控制主网点(CPI460-A、CPII243)测量的导线点ZD9046和ZD9047,测量出L0坐标为X=3422097.926m, Y=512993.343m。两次放样和测量L0点都使用基座架设棱镜,保证测量精度。

将该坐标利用坐标转换公式转换为贯通面坐标系的坐标,为x=0.0051m,y=2.4929m。计算新坐标的差值,得到△x=0.005m,△y=-0.007m,即为对应贯通误差。则隧道横向贯通误差为7mm,纵向贯通误差为5mm。

(2)高程贯通误差的测定

采用Trimble Dini03电子水准仪,从闻家山隧道进口附近的CPI459C2,经隧道洞内,到出口附近的水准点CPI460A1,往返观测。观测手簿见附件3,

经计算,成果如表3-2,CPI459C2与 CPI460A1的高程不符值为1.1mm,即为高程贯通误差。

表3-2隧道高程贯通误差计算

(3)贯通误差成果

闻家山隧道实际测量横向贯通误差为7mm,纵向贯通误差为5mm,高程贯通误差为1.1mm 。

根据规范要求(如表3-1),开挖长度小于4km的隧道,横向贯通误差限差为100mm,高程贯通误差为50mm,所以闻家山隧道的贯通误差远小于限差要求,符合规范要求。

4、贯通误差的调整

4.1 规范要求

(1)平面贯通误差调整。贯通误差≤50mm时,在保证隧道建筑限界要求的条件下,可不调整线路中线。贯通误差>50mm时,采用线位拟合方法进行调整,调整后的线路应满足平顺性标准和隧道建筑限界的要求。

(2)高程贯通误差调整。由两端测得的贯通点高程,应取两贯通高程的平均值作为调整后的贯通点高程。高程贯通误差调整可按贯通误差的一半,分别在两端未初衬地段,以未初衬的线路长度按比例调整其范围内各水准点高程。未衬砌段高程放样应依据调整后的水准点高程进行。调整后的线路应满足线路设计和验收规范要求。

4.2 闻家山隧道贯通误差的调整

闻家山隧道横向贯通误差为7mm ,所以在保证隧道建筑限界要求的条件下,可不调整线路中线。高程贯通误差为1.1mm ,高程贯通误差也可不调整。 5、贯通后洞内导线网的重新附合观测和高程点的高程附合平差

为了保证导线网和高程网的整体闭合和连续性,贯通后做洞内导线网的重新附合观测和高程点的附合平差。 5.1 洞内导线的进出口附合观测平差计算

观测数据手簿和导线示意图见附件1,数据平差处理计算见附件2,本次进出口导线经洞内联测,角度闭合差为 2.64秒,导线全长相对闭合差为1/63338,测角中误差为1.32秒,满足四等导线的精度要求。

表5-1隧道洞内导线点贯通测量前后成果数据对比

5.2洞内水准点的进出口附合观测平差计算

观测手簿数据见附件3,从CPI459C2经洞内到CPI460A1

,往返观测高差不符值为0.00048m ,精度符合规范要求,可以平差处理计算。

表5-2隧道贯通后洞内水准点高程附合计算成果

6、附件

附件包括:(1)导线外业观测记录手簿和导线示意图;(2)导线点坐标平差计算表;(3)水准外业观测记录手簿;(4)仪器检定证书。

隧道贯通测量报告

炮台山隧道贯通测量报告 1、前言 由于测量过程中不可避免地带有误差,因此贯通实际上总是存在偏差的。隧道贯通接合处的偏差可能发生在空间的三个方向中,即沿隧道中心线的长度偏差,为纵向贯通误差;垂直于隧道中心线的左右偏差,为横向贯通误差;和上下的偏差,为高程贯通误差。纵向贯通误差只对贯通在距离上有影响,对隧道的质量没有影响,而后两种方向上的偏差对隧道质量有着直接影响。 2、工程概述 新建铁路原州区至王洼线第三合同段的炮台山隧道地处黄土梁峁区,隧道进口位于山前陡坎上,出口位于清石河右岸台地上。隧道长度1548m,隧道起止里程DK19+634-DK21+185。隧道进出口段埋深较小,多在6.6-47m之间,其余段落隧道埋深较大,最大埋深可达120m。隧道位于线路纵坡 6.0‰和 4.3‰的单面下坡上,除DK19+704-DK20+013位于R-600m的曲线上和 DK20+641-DK21+151位于R-800m的曲线上,其余段落位于直线上。隧道进、出口道路均被深沟所阻,只有乡村道路可以绕行到达,交通困难。 3、贯通误差测量 3.1贯通测量方案 炮台山隧道施工采用进出口双向掘进。隧道贯通后,在隧道贯通面上钉一临时桩,用隧道进口洞内的控制点,和隧道出洞洞内的控制点,各自向临时桩进行测量,分别测取临时桩点的平面坐标,将两组

坐标的差值分别投影到贯通面上和隧道中线上,则贯通面上的投影即为横向贯通误差,在中线上的投影即为纵向贯通误差。高程贯通测量是测定实际的竖向贯通误差,通常采用水准测量方法,从隧道进口和出口附近的水准点开始,各自向洞内进行,分别测出贯通面上同一点的高程,即获此点的两个高程之差。依据【铁路工程测量规范】(TB10101-2009)中表6.1.4关于隧道贯通误差规定: 2 相向开挖长度大于20km的隧道应作特殊设计 炮台山隧道全长1548m,故横向贯通误差限差为100mm,高程贯通误差限差为50mm。 3.2贯通误差的测定 纵横贯通误差的测定。采用GPT7501全站仪,采用由炮台山隧道进口两个控制点ZD14和ZD16引入的控制点ZD14-23和ZD14-21,测量贯通面的临时桩L1坐标为X(3997968.145),Y(496282.256),H(1658)。隧道出口两个控制点GPS12-2、GPS12-1引入的控制点ZD8-8和ZD8-7,测量贯通面的临时桩L1坐标为X(3997968.107), Y(496282.273), H(1658.004)。得到△X=0.038,△Y=0.017,△H=0.004。将两组坐标分别投影到贯通面上、隧道中线上和高程上,临时桩L1进口测的里程为20+685.981,距中

地铁隧道贯通测量

毕业设计(论文)题目地铁隧道贯通测量 英文题目Through Measurement of Subway Tunnel 摘要 为了使两个或多个掘进工作面按其设计要求在预定地点正确接通而进行的工作 叫做贯通测量,这是一项重要的地下隧道施工技术。贯通测量的基本任务是保证各 项掘进工作面均沿着设计的位置和方向掘进,使贯通后结合处不超过规定的限度。 贯通测量工作直接影响到地下工程的质量,因此有必要对其方法做系统的学习研究。 关键字:地下工程测量沈阳地铁贯通测量 Abstract

The main target of through measurement is to make sure two or more heading face according to the design requirements connected at the correct point. Through measurement,one of the underground measurement methods, is an important technology of underground tunnel construction.Through measurement direct impact the quality of underground works. It is therefore necessary to make its way to study systems. Key word:underground measurement, Shenyang metro, through measurement

隧道贯通测量报告(新)

贯通测量报告 西安铁一院咨询监理公司重庆轨道交通三号线一期工程监理总部:我项目部承建的重庆市轨道交通三号线一期童家院子车场出入线隧道工程于2010年5月20日整体贯通,贯通后项目部立即组织测量人员进行了贯通测量,并报请铁一院驻地监理及测量监理组进行复测,现报告如下: 一、测量依据、技术标准 1、国标GB50026-93《工程测量规范》; 2、GB50308-2008《城市轨道交通工程测量规范》; 3、CJJ8-99《城市测量规范》; 4、重庆市轨道交通总公司编制的《重庆轻轨较新线一期工程施工测量技术管理规定》(试行稿)。 二、测量用仪器设备 外业观测分为一组进行,平面复核测量采用徕卡TCR402、仪器标称精度2”2+2ppm;搞成采用徕卡DNA03型电子水准仪,配条形码铟钢尺,仪器精度为0.3mm/Km. 三、测量 洞外控制测量采用GPS导线控制,在隧道施工前已布设,施工中洞内采用精密双导线控制施工测量。童家院子车场出入线隧道左右线分别在YK0+358.871和ZK0+358.911处与车场出入线隧道下一标段贯通。本次贯通测量童家院子车场隧道中线出口段采用已知控制点GC1为起始边,在贯通面设一点LD1,入口段采用已知控制点GC5为起始边测量贯通点LD1,其贯通测量线路示意图如下:

贯通面 已知点已知点 已知点 测点 进口端 出口端 已知点贯通测量示意图 测量操作过程中各项指标均符合规范性标准要求。贯通测量成果如下表所示: 表1 贯通测量成果表 四、结论 贯通误差符合《工程测量规范》GB50026-2007、《城市轻轨交通工程测量规范》GB50308-2008的精度要求,所以隧道内的加密导线点能够满足隧道整体施工及验收规范要求。 中铁七局武汉分公司重庆轻轨项目部 2010年5月20日

隧道贯通测量设计书

目录 1 编制依据 (2) 2 工程概况 (2) 3 平面控制 (2) 4 高程控制 (4) 5 施工放样 (4) 6 横向贯通中误差估算与分析和控制点观测措施 (4) 7 洞内、外水准高程测量对竖向贯通中误差的估算和分析 (8) 8 洞内、外控制全部贯通测量中误差计算 (8) 9 全部贯通测量中误差估算总结 (9) 10 附隧道洞内外控制网点平面布置示意图及控制点概算坐标 (9) 桃江核电厂进厂道路Ⅰ标段洞冲里隧道

贯通测量技术设计书 1编制依据 1.1《工程测量规范》(GB50026-2007); 1.2《公路勘测规范》(JTG C10-2007); 1.4 《公路隧道施工技术规范》(JTJ042—94); 1.5 桃江核电厂进厂道路Ⅰ标段洞冲里隧道施工设计图纸(主要是隧道轴线平面控制点及曲线要素表、纵断面设计高程数据和施工设计图); 1.6 隧道洞口地形及洞外已知控制点点位实际情况等。 2 工程概况 桃花江核电厂进厂道路工程是桃花江核电前期工程的组成部分,道路全长7.331Km,其中Ⅰ标段1.6km,包括785m道路和815m隧道。 本标段洞冲里隧道位于线路交点JD1与JD2间连线的直线上,里程桩号为K0+650~K1+465,全长815m,属于中型隧道,单向纵坡i=-1.98%,设计开挖断面为四心圆拱形,上半圆R=7.026m/7.096m,左右边墙R=12.526m/12.596m,仰拱R=15.300m。隧道进口坐标:X=3157775.546,Y=599165.727,H=107.933;出口坐标:X=3158177.782, Y=598456.904,H=91.773。 3 平面控制 3.1 平面控制点布设 在隧道口附近,工程勘测设计时已布测并移交平面GPS四等控制点4个,其点名和坐标见表1,两点间能相互通视。根据现有地面控制点及《公路勘测规范》(JTG C10-2007)等施工测量规范和设计、业主等的规定和要求,并结合本工程的线形特点及施工工艺的实际情况、到场使用的测量设备等级等,拟沿隧道轴线方向布设控制支导线(见隧道洞内外控制网点布置示意图中的附图1),所布设的控制导线网点概算坐标见附表13。 3.2 选点埋石 根据规范要求,洞内控制导线在布设时,其平均边长控制在300m且相邻边长、短边长之比不大于3:1,以减小短边对测角精度的影响。洞内控制点埋设在隧道底板稳固的洞冲里隧道GPS四等控制点坐标及高程一览表表1

XX隧道贯通误差报告

X X高速X标 XX隧道贯通误差报告 编制: 复核: 技术负责人: 监理工程师: 中铁X局XX高速X标项目部 2013年11月5日

目录 1、前言 由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;由进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,由进出口端导线控制点分别测得贯通面同一点的坐标为横向贯通误差,其中纵向及工程贯通误差对隧道正确贯通一般影响不大。目前隧道贯通误差主要分析横向贯通误差。 2、编制依据 (1)《工程测量规范》(GB50026-2007) (2)《国家三、四等水准测量规范》(GB/T12897-2006) (3)《公路隧道施工技术规范》(JTGF60-2009) 3、工程概况

XX隧道为双洞四车道,左、右线隧道分离式布设,左线隧道全长759m,右线隧道全长882m,围岩以Ⅲ、Ⅳ、Ⅴ级为主,本隧道左线LK6+211~LK6+970位于半径4200m的圆曲线上,右线RK6+306~RK7+188位于半径4550m的圆曲线上。 4、贯通误差测量 4.1贯通测量实际观测值的确立 根据影响隧道贯通测量误差的因素分析,XX隧道贯通测量误差预估分别从洞内、外横向、纵向及竖向因素考虑,预估其相应误差值,作为实际贯通误差的参考值。其中纵向贯通误差主要影响隧道线路坡度,线路坡度i=h/S*1000‰,(h为两点间高差,S为水平距离)对上式进行微分后得:di=dh/S*1000‰-hdS/S2*1000‰,当只考虑纵向贯通误差dS时,假设可以忽略的坡度影响为0.001‰,即100m的水平距离允许的高差为±0.1m,可认为:0.001‰=h*dS/S2*1000‰,dS=S2/1000000h,XX隧道左线单向纵坡为-9.13‰,即h/S=9.13/1000,代入上式可得左洞:dS=759/1000000*1000/9.13=0.083m,表明XX隧道左线允许纵向贯通误差为0.083m;右线单向纵坡为-10.87‰,即h/S=10.87/1000,代入上式可得右洞: dS=882/1000000*1000/10.87=0.081m,表明XX隧道左线允许纵向贯通误差为0.081m。从实际情况统计,隧道一般纵向贯通误差均小于按上式计算的结果,因此,纵向贯通误差一般情况下不会给设计坡度和工程建筑结构造成不利影响,考虑其上分析所得,XX隧道纵向贯

××隧道贯通误差测量报告

XX高速公路XX至XX段建设项目 XX合同段 里程桩号:K78+005?K82+632 XX隧道贯通误差测量报告 XX建设(集团)有限公司 XX高速公路集安至XX段XX标 项目经理部

二零一七年七月三日 1、前言 (1) 2、编制依据 (1) 3、工程概况 (1) 4、贯通误差测量实测方案及误差规定 (2) 5、贯通误差测量实测数据 (3) 6贯通测量实测数据分析 (4)

1、前言 由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;有两进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,其中纵向及高程贯通误差对隧道正确贯通影响不大,目前隧道贯通误差主要为横向贯通误差。? 2、编制依据 (1)《工程测量规范》(GB50026-2007 (2)《国家三、四等水准测量规范》(GB/T12897-2006) (3)《公路隧道施工技术规范》(JTG?F60-2009 ? 3、工程概况 标段内隧道共1座,为XX隧道,该隧道设计为分离式隧道。隧道桩号范围为左线LK79+874 LK80+515路线总长为639m右线RK79+880- RK80+490路线总长为610m隧道洞口段围岩级别为V 级,洞身段为V级、W级、皿级,设置人行横洞1处。双向四车道高速公路,隧道设计速度:80km/h。

4、贯通误差测量实测方案及误差规定 (1)贯通误差测量实测方案 XX隧道采用双洞单向开挖,由隧道左右洞出口向进口开挖,根据XX隧道左右洞进出口导线布设情况: 左洞出口于Z4设站,以Z3-1定向,测量GPS控制点GD006即 点GD0061; 右洞出口于Y4设站,以Y3-1定向,测量GPS控制点GD006即 点GD0062; 如图 X) / DL/

地铁隧道贯通测量

地铁隧道贯通测量 林正庆 上海地铁一号线纵贯市区,全长14.7km,是上海目前较大的市政施工项目之一。上海隧道一号线全线采用盾构机械施工,施工时要进行跟踪测量,即贯通测量。隧道贯通测量精度指标有多种,其中横向和竖向精度指标最为重要,是衡量隧道掘进的准确程度的标准。贯通测量指导盾构到达竖井预留门洞,要求准确贯通,因此贯通测量在盾构施工中起到很重要的作用。 地铁隧道贯通测量的目的,是使盾构准确地沿着设计轴线开挖推进,并进入接收井的预留门洞。盾构机头中心与预留门洞中心的偏差值称为贯通误差。预留门洞的大小,应该是盾构内径、隧道内衬管径厚度、施工误差、测量误差这四个方面的总和。测量误差如能达到设计所要求的±5cm,就能达到贯通测量规定的要求。但一般情况下,建设单位为了保证质量起见,对测量精度提出更高的要求。 上海地铁一号线平面首级控制为四等空中导线,一般点位设置在区间隧道附近较稳定的高大建筑物上,观测视线由空中传递,并采取强制归心测角测距。高程控制点为二等几何水准网进行联测,点位远离施工区,较稳定。地面坐标传递到进下隧道的方法,一般采用方向线法、投点法两种;高程控制传递至井下采用钢尺悬挂观测法进行。 常熟路站至陕西南路站区间隧道工程,由于受施工现场条件的限制,采用常规的地面坐标传递到井下的方向线法和投点法已不能保证精度,而采用经纬仪加光电测距仪直接进行传递,这是首次。 1工程概况 地铁一号线常熟路站至陕西南路站区间隧道工程全长742m,为上、下两平行隧道,位于淮海中路下面。该区间隧道采用逆向施工技术进行掘进,先埋设地下管线,在隧道轴线上预留门洞,再进行路面铺装,而后进入地下施工。 两车站各预留施工沉井,井口边长仅8m,且偏离隧道轴线设置。沉井深15m,施工出土、进料都由井口通过。同时控制点受施工现场限制,控制点所在的建筑物在施工区沉井旁,建筑物沉降使控制点产生位移,由此给确保隧道贯通测量的精度带来很大难度。 隧道贯通测量误差,是指纵、横向和竖向误差。纵向误差影响掘进长度,横向、竖向误差则影响贯通的准确性。 2 横向贯通测量 横向贯通测量一般包括:地面控制测量;竖井联系测量;井下导线测量。 如图1,Ⅳ424甲控制点设置在常熟路附近建筑物上,距井口170m。Ⅳ423在瑞金路比较稳定的建筑物上,距井口约180m。这两点是该地铁区段上、下行线隧道贯通测量的起始点。 图1 控制点分布图 2.1 误差源 (1)Ⅳ424甲~Ⅳ423方向与隧道轴线近似平行,故起始边长度误差对横向贯通误差的影响可忽略不计。

隧道贯通测量方案设计 郭政超

隧道贯通测量方案设计郭政超 摘要:随着隧道贯通测量方法的多样化,以及测量经验的积累,地下隧道贯通 误差愈加可靠。随着GPS空间定位技术、高精度陀螺经纬仪的普及和自动跟踪技术、全站仪空间交会解析技术等测绘科学新技术的大力发展与应用,为隧道建设 提供了安全与精度的保障。文章重点就隧道贯通测量方案及误差控制分析要点进 行研究,以供参考。 关键词:隧道工程;贯通测量;方案设计;误差分析 引言 隧道项目为了加快施工速度,缩短施工工期,改善通风状况及劳动条件,隧 道施工通常都会采用进、出口两个工作面相向掘进。为了保证各掘进工作面沿着 设计的方向掘进,使贯通后接合处的偏差不超过《工程测量规范》允许的限差要求,满足隧道贯通的精度,所以贯通测量的方案选择及误差预计都是必要的。贯 通测量方案和测量方法选用的是否合理,一方面要看它们在实地施测时是否切实 可行,另一方面还要看贯通测量的精度是否能满足隧道贯通的设计容许偏差要求,进行误差预计目的就是帮助我们选择合理的测量方案和测量方法,做到隧道贯通 心中有数,既不应由于精度不够而造成工程损失,也不盲目追求高精度,而增加 测量工作量,尤其对长大隧道的贯通有着十分重要的意义。 1隧道贯通测量方案设计目的和意义 隧道控制测量目的在于控制隧道的贯通误差在允许的贯通误差范围内,保证 隧道相向开挖的工作面沿着隧道线路前进,在贯通面处将隧道贯通;隧道贯通面 结合处的偏差可以分解为空间的三个方向,即沿隧道中心线的长度偏差,为纵向 贯通误差;与隧道中心线垂直的方向出现的左右偏差,为横向贯通误差;高程贯 通误差就是掘进过程中出现的高程误差。纵向贯通误差只影响贯通长度,不影响 隧道的质量,只要在定测中线的误差范围内,满足隧道铺轨要求即可。高程误差 太大会改变设计隧道的坡度,而横向误差过大会改变隧道中线的几何形状,给工 作带来重大影响。 2隧道施工控制网布设方案分析与比较 2.1短隧道测量方案 对于长度较短且呈直线状态的隧道,可不进行控制测量而直接测量,如采用 现场标定法。现场标定法的优点在于可以不建立地面与地下的控制网,测量和计 算工作比较简单,但其缺点也很严重,因此这种方法只适用于比较短的直隧道。 2.2长隧道控制网布设及测量 对于隧道较长、地形复杂的山岭地区,地面平面控制网也可以布置成三角网 形式,测定三角网的全部角度和若干条边长,或全部边长,使之成为边角网。三 角网的点位精度比导线高,有利于控制隧道贯通的横向误差。对于洞内平面控制 测量,洞内平面控制均按支导线估算测量误差对横向贯通精度的影响值,洞内平 面控制测量设计就是根据所配备的测量仪器设备能达到的精度选择符合《测量技 术规则》要求的测角和测距中误差,详细如下: 上述公式中,其中右边第一项为测角误差引起的横向贯通误差,S为导线边长;第二项为量距误差引起的横向贯通误差, =206265;分别为洞内支导线点和 边到贯通面的垂直距离和在贯通面上的投影长;分别为支导线设计测角、测距中 误差,选择水平角观测必须采用测回法。

贯通测量报告

贯通测量报告 中铁二院(成都)咨询监理有限责任公司监理总部:我项目部承建贵阳轨道交通1号线第六工作段展览馆竖井隧道工程右线于2015年4月15日整体贯通,贯通后项目部立即组织测量人员进行了贯通测量,并报请中铁二院驻地监理及测量监理组织进行复测,现报告如下: 一、测量依据、技术标准 1.国标GB50026—2007《工程测量规范》; 2.国标GB50308—2008《城市轨道交通工程测量规范》; 3.CJJ8—99《城市测量规范》。 二、测量用仪器设备 全站仪莱卡TS09PLU1”R500 、三脚架、对中杆棱镜、仪器经鉴定精度为0.22mm/Km。 三、测量 洞外控制测量采用GPS导线测量,在隧道施工前已布设,施工洞内采用精密双导线控制施工测量。展览馆竖井隧道右线分别在YDK25+451.456处与展览馆大里程隧道下一标段贯通。本次贯通测量展览馆竖井隧道右线小里程采用已知控制点L1和L2为起始边,在贯通面附近设一临时桩RH1,大里程段采用已知控制点SJ1和SJ2为起始边测量贯通点RH1,其贯通测量线路示意图如下:

已知点 已知点 测点 贯通面 已知点已知点 小里程 大里程 贯通测量示意图 测量操作过程中各项指标均符合规范性标准要求。贯通测量成果如下表所示: 点号X坐标Y坐标Z高程 坐标差 (mm) 贯通误差(mm)△X △Y 横向纵向高程 展览馆竖井隧道小 里 程 L1 L2 RH1 2940067.609 470382.190 1034.596 -2 -7 5 6 3 大 里 程 RH1 2940067.611 470382.197 1034.593 SJ1 SJ2 四、结论 贯通误差符合GB50026—2007《工程测量规范》、GB50308—2008《城市轨道交通工程测量规范》、CJJ8—99《城市测量规范》的精度要求,所以隧道内的加密导线能够满足隧道整体施工及验收规范要求。 中铁十九局团贵阳轨道交通1号线第六工作段项目部 2015年4月18日

隧道贯通测量误差预计方案设计

隧道贯通测量误差预计方案隧道进出口、斜井间贯通时,除进行洞外导线和洞外高程测量之外,还必须进行隧道洞内和进出口、斜井间的联系测量。所以在进行贯通测量误差预计时,要考虑隧道进出口、斜井间的联系测量误差及隧道洞内测量误差的综合影响。 (一)测量方案简述 工程要求水平重要方向x’上的容许偏差为0.3m,竖直方向上的容许偏差为0.05m. (1) 隧道洞外进口、斜井按B级GPS网进行测量,测量时采用美国产天宝5800GPS观测2个时段,每个时段测量1.5小时。 (2)定向测量 尤溪隧道进口、斜井各采用几何定向。 1、对中误差 当定向边边长d=400m时,仪器及棱镜的对中误差为:E C=E T=±1”。 2、测线前后两测回的平均值误差M平=±1/√2=±0.71”. 则M定=±√M EC2+M ET2+M平=±√12+12+0.712=±1.58” 3、洞内导线测量 进口从洞口起始边GCPI140-GCPI119边开始,沿大里程方向闭合到秀村斜井的CPI140-3~CPI140-4边。测角、测边采用日本产SOKKIA SET230R全站仪,角度测9个测回:每边往、返各测3个测回,一测回内读数误差不大于5mm,单程测回间较差不大于

10mm,往测及返测边长化算到隧道平均高程面上水平距离(经气象和倾斜改正)后的互差,不得大于边长1/6000。所有闭(附)合导线和支导线均有不同观测者独立测量两次,取两次测量的角度及边长平均值,并进行严密平差计算。 4、隧道洞外水准测量 进口与秀村之间的水准测量按照洞外二等水准要求实测,自进口洞外水准点GCPI140到秀村斜井洞口水准点BM60进行往返观测单程路线长度27KM,同时采用美国Trimble电子水准仪和日本产Sokkia电子水准仪实测。 5、洞内水准测量 采用苏-光自动安平水准仪往返观测,往返高差的较差不大于±4√L(L 为水准点间的长度,以km 为单位)。水准路线长度6.186km. 以上高程均独立进行两次。 (二)误差预计所需基本误差参数的确定 误差参数根据《新建铁路工程测量规范》(TB10101-99);《国家一、二等水准测量规范》(GB12897-91);《客运专线无砟轨道铁路工程测量暂行规定》(铁建设【2006】189号);《时速 200~250公里有砟轨道工程测量指南(试行)》(铁建设函【2007】)76号)中限差规定反算求得。 (1)隧道洞内导线的测角误差:按日本产SET230R全站仪标称精度mβ=2″。

隧道贯通误差测量报告

××高速公路××至××段建设项目 ××合同段 里程桩号:K78+005~K82+632 ××隧道贯通误差测量报告 ××建设(集团)有限公司 ××高速公路集安至××段××标 项目经理部

二零一七年七月三日 目录 1、前言 (1) 2、编制依据 (1) 3、工程概况 (1) 4、贯通误差测量实测方案及误差规定 (2) 5、贯通误差测量实测数据 (4) 6、贯通测量实测数据分析 (5)

1、前言 由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;有两进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,其中纵向及高程贯通误差对隧道正确贯通影响不大,目前隧道贯通误差主要为横向贯通误差。 2、编制依据 1) 《工程测量规范》( GB50026-2007) 2) 《国家三、四等水准测量规范》( GB/T12897-2006) 3) 《公路隧道施工技术规范》( JTG F60-2009) 3、工程概况 标段内隧道共1 座,为××隧道,该隧道设计为分离式隧道。隧道桩号范围为左线LK79+876~LK80+515,路线总长为639m;右线RK79+880~RK80+490,路线总长为610m。隧道洞口段围岩级别为Ⅴ 级,洞身段为Ⅴ级、Ⅳ级、Ⅲ级,设置人行横洞1 处。双向四车道高速公路,隧道设计速度:80km/h。

4、贯通误差测量实测方案及误差规定 (1)贯通误差测量实测方案 ××隧道采用双洞单向开挖,由隧道左右洞出口向进口开挖,根 据××隧道左右洞进出口导线布设情况: 左洞出口于Z4设站,以Z3-1 定向,测量GPS 控制点GD006,即点GD006 1; 右洞出口于Y4设站,以Y3-1 定向,测量GPS 控制点GD006,即点GD006 2; 如图

地铁隧道联系测量方法及精度控制讲解

地铁隧道联系测量方法及精度控制 (王伟中交隧道盾构公司江西南昌30029) [摘要] 本文以南昌地铁一号线青山湖站至高新大道站为例,对盾构隧道区间联系测量方法进行详细的介绍。同时对数据的处理方法,对投点方法及两井定向精度进行了相关分析。 [关键词] 联系测量两井定向精度分析数据处理 1前言 随着中国的城市化进程的加快,城市人口的增加给城市交通带来的压力日渐明显。然而,城市化的发展绝不可以被交通压力所约束。因而与我们传统的地上交通相对应的地下交通就成为缓解城市交通压力的新渠道。这就是目前的大、中城市正在极力发展的地铁交通。地铁的发展主要依赖与地下工程隧道开挖等的相关技术的进步,了解相关的主要技术就会知道地铁测量对地铁隧道尤为重要,这是地铁施工的最重要的基本条件。 2工程背景概况 青山湖大道站~高新大道站区间里程范围:SK20+052.554~SK20+902.822,区间长度为850.268双线延米,下行线在XK20+840.204里程处设置XK20+840.000长链(XK20+840.204=XK20+840.000 长链0.204),区间线路间距13.4~15.0m,线路包括2个曲线,曲线半径均为3000m。区间最大坡度为22‰,区间隧道覆土厚度在10.0m~16.5m。本区间设置一处联络通道(兼泵站),中心里程在为:SK20+502.007和XK20+502.042。区间西端为青山湖大道站,东端为高新大道站。青山湖大道站~高新大道站区间区间隧道,线路在北京东路下方。隧道结构距离地面319#、320#、321#、371#(19层)建筑物建筑物均在14m以上,地面建构筑物无需采取特殊处理和保护措施。 根据盾构工程筹划,两台盾构机从青山湖大道站东端出发,向东掘进到高新大道站西端结束。 3联系测量 在地铁隧道推进前必须要进行联系测量,即将车站地面平面坐标系统和高程系统传递到井下,使车站上下能采用同一坐标系统所进行的测量工作;两井定向有物理定向、几何定向等,这里主要阐述两井几何定向。联系测量须独立进行两次,在互差不超过限差时采用均值作为联系测量的最终结果。

隧道贯通误差测量报告

隧道贯通误差测量报告 1、前言 由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;有两进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,其中纵向及高程贯通误差对隧道正确贯通影响不大,目前隧道贯通误差主要为横向贯通误差。 2、编制依据 (1) 《工程测量规范》(GB50026-2007 (2) 《国家三、四等水准测量规范》(GB/T12897-2006) (3) 《公路隧道施工技术规范》(JTG F60-2009) 3、工程概况 标段内隧道共1座,为隧道,该隧道设计为分离式隧道。隧道桩 号范围为左线LK79+874 LK80+515路线总长为639m 右线 RK79+880- RK80+490路线总长为610m隧道洞口段围岩级别为V

级,洞身段为V级、W级、皿级,设置人行横洞1处。双向四车道高 速公路,隧道设计速度:80km/h。 4、贯通误差测量实测方案及误差规定 (1)贯通误差测量实测方案 隧道采用双洞单向开挖,由隧道左右洞出口向进口开挖,根据隧道左右洞进出口导线布设情况: 左洞出口于Z4设站,以Z3-1定向,测量GPS控制点GD006即 点GD006 1; 右洞出口于Y4设站,以Y3-1定向,测量GPS控制点GD006即 点GD006 2 分别将GD006 1和GD006 GD006 2和GD006勺坐标、高程投影 至线路中线及其垂直方向上,所得差值即为隧道纵向和横向误差,测得两组高程之差即为竖向贯通误差。 (2)误差规定 隧道贯通误差根据《工程测量规范》(GB50026-2007规定

地铁隧道贯通测量方法的改进与精度分析

地铁隧道贯通测量方法的改进与精度分析 发表时间:2018-06-06T10:37:55.260Z 来源:《基层建设》2018年第10期作者:李徐亮 [导读] 摘要:随着社会的进步和国民经济的发展,人们对于出行的质量要求越来越高,这就促使大量的公共基础设施投入的建设。 河北省煤田地质局物测地质队河北邢台 054000 摘要:随着社会的进步和国民经济的发展,人们对于出行的质量要求越来越高,这就促使大量的公共基础设施投入的建设。地铁作为城市当中最为重要的交通基础设施,在其轨道的布设时经常会因为种种原因需要穿越隧道。地铁工程施工的过程当中确保隧道贯通是在地铁测量工作中的一个非常重要的任务,其贯通误差的程度将会对地铁工程的整体施工质量以及工程造价形成直接的影响。 关键词:地铁隧道贯通;测量方法;精度 引言 地铁施工过程中保证隧道贯通是地铁测量的一项主要任务,其贯通误差的大小将直接影响到地铁建设质量和工程造价。因此,在地铁工程测量精度设计中,为用尽可能小的成本保证隧道按设计要求进行贯通,合理地规定隧道贯通误差及其允许值,以便制定在技术、经济上合理的贯通测量方案,是地铁测量的一项重要的研究任务。 1概述 1.1贯通测量研究的现状 中国是一个多山国家,其中山地、丘陵、高原占大部分,平原只占12%,大小山脉纵横全国。隧道建设在我国公路工程,铁路工程,引水工程等工程建设中占有重要地位。据统计,目前全国公路隧道达2889处,总长1527km。其中特长隧道43处,占166km,长隧道381处,占625km。 1.2工程概况 某隧道工程,其隧道是一座左、右线分离的四车道高速公路特长隧道,隧道设计时速80km/h。隧道长度见表1。 表1 礼让隧道长度表 2贯通测量误差分析 地铁隧道贯通测量误差主要有3种:纵向贯通误差,即贯通误差在隧道施工中线方向上的投影;横向贯通误差,即贯通误差在垂直于隧道施工中线的水平方向上的投影;高程贯通误差,即贯通误差在垂直于隧道施工中线的竖直方向上的投影。总体来看,纵向贯通误差和高程贯通误差不会严重影响隧道施工质量,高程贯通误差只影响地铁接轨点的坡度。但在实际测量中,当横向贯通误差超出一定范围时,除影响隧道施工质量外,还会使隧道无法准确贯通,严重时会导致隧道重建,影响工程进度,浪费人力物力资源。因此,为了避免此类误差,地铁隧道在施工过程中,除需要利用一定测量工具外,还需要使用一些控制方法才能减小贯通误差。一般认为,矿山隧道施工中会在3个环节出现误差。第一环节,地面控制测量,误差为m1;第二环节,竖井测量,误差为m2;第三环节,地下导线测量,误差为m3。结合实际经验,每一项的允许误差为m1=1m,m2=2m,m3=3m,那么区间隧道允许的横向贯通误差为: 因此,对于在地铁隧道贯通中易出现误差的3个环节,应采取相应的测量方法,增加检核条件,减小误差。 3隧道贯通测量的预计方法 在隧道测量中,由于隧道施工测量在隧道洞内和洞外进行,受场地与测量作业的限制,隧道洞内施工测量使用导线测量方法进行测量时,容易导致测量误差的积累,使得隧道贯通位置和设计位置的预计误差变化明显,降低了隧道贯通质量。因此在隧道贯通工程设计阶段,必须做好所选测量方案与方案的误差预计工作,对测量方案中设定精度进行计算,确保修正后的测量方案和方法满足工程施工的精度要求。随着测量仪器测距精度的提升,隧道施工测量在纵向上所出现的贯通预计误差会小于测量限差要求,使用常规的水准测量均可满足工程精度要求。但由于隧道横向贯通误差的大小直接关系到隧道整体的施工质量,严重者会导致整个隧道报废,因此必须加强与控制横向贯通的误差参数,确保误差预计在限定范围内。 4改进措施以及应用成果 4.1CORS用在地铁控制网的解算 将撑死高等级的控制点当作地铁平面的控制网,这是我们国家在早期地铁的施工建设过程当中所应用最主要的做法,而且现在有很多城市也在使用这种方法。要是城市之中不具备足够范围以及密度的高等级控制点,那么久要耗费很多精力在市区的范围之内对控制网加以布设,不过因为城市建设进程的逐步加快,所布设出的高等级控制点经常会受到破坏,遭受破坏的频率相当高。本文结合某地铁线路建设工程实例进行探讨,该线路的GPS控制网一共新埋设了二十九个,包括地面点十四个,搂定点十五个,对三个城市的高等级控制点加以联测。GPS观测利用静态作业的形式,利用六台Trim-ble5700型的双频接收机实现观测,同时选取网中的A1、A11、A15、A25、B1以及三个CORS起算点Ⅰ站,Ⅱ站以及Ⅲ站构成框架网实施长时间的观测。然后把所获得的数据信息加以基线质量的检核、二维约束平差以及三维约束平差,将对结果加以检验之后发现能够满足规范当中的要求。 4.2地下导线测量的改进 隧道内控制导线是随着隧道开挖而向前延伸的,一般布设成支导线。在隧道,受到条件的限制导致导线的图形强度较弱,其点位精度也会随着隧道掘进距离的延长而变差。尤其是在城市地铁建设中,外界环境对联系测量的影响越来越大,极大地限制了在洞内引测方位角的条件,很难保证洞内定向的精度。利用陀螺经纬仪定向时,定向精度达到了要求,验证了原一井定向测量资料的可靠性。与传统的几何定向相比,陀螺经纬仪定向具有操作简单,占用井筒和平巷的时间,精度高等优点。同时,在导线传递过程中,加测一条陀螺经纬仪定向

太平山隧道贯通测量方案

新建沈阳至丹东铁路客运专线工程TJ-3标段 太平山隧道 贯通测量方案 编制: 复核: 审定: 中国建筑股份有限公司沈丹客专TJ-3标三工区 二○XX年十一月

目录 一、工程概况 (4) 二、编制依据 (4) 三、人员安排及拟投入的仪器设备、软件 (4) 四、隧道贯通方案内容及技术要求 (5) (一)洞外控制测量 (5) 1、平面控制网技术要求 (5) 2、外业要求 (7) 3、洞外(GPS测量)横向贯通误差估算 (7) (二)洞内控制测量 (8) 1、洞内导线布设要求 (9) 2、平面控制网技术要求 (9) 3、贯通中误差估算 (9) (三)高程控制测量 (10) 1、二等水准技术要求 (10) 2、洞外二等水准复测 (10) 3、洞外高程贯通误差估算 (12) 4、洞内高程控制网布设及要求 (12) 5、贯通中误差估算 (13) (四)隧道贯通误差测量及调整 (13) 1、贯通误差的测量 (13) (1)平面贯通误差测量 (13)

(2)高程贯通误差的测量 (14) 2、贯通误差的调整 (14) (1)平面贯通误差的调整 (14) (2)高程贯通误差的调整 (14)

一、工程概况 太平山隧道位于辽宁省凤城市境内穿越辽东低山区。隧道为单洞双线隧道,隧道最大埋深为213m。隧道进口里程为DK179+395,出口里程为DK181+435,隧道全长2040m。隧道进口至DK180+486.5436段位于半径为7000的右偏曲线上,DK180+486.5436至出口段位于直线上,隧道内线间距4.6m,隧道内纵坡为3‰的单面下坡。DK179+395~DK179+430 、DK181+255~DK181+435为Ⅴ级围岩,DK179+430~DK179+570、DK181+175~DK181+255为Ⅳ级围岩,DK179+570~DK180+730、DK180+840~DK181+175为Ⅱ级围岩,DK180+730~DK180+840为Ⅳ级围岩。 为确保线路平纵曲线线型顺畅,管段内不出现断差现象。本工区将完成CPI、CPII点的复测,并在CPI、CPII点的基础上布设加密点并进行测量,对隧道横向、高程贯通精度的要求测设相应等级独立的平面网和高程控制网,进行贯通测量。 二、编制依据 《高速铁路工程测量规范》(TB10601-2009) 《国家一、二等水准测量规范》(GB/T12897-2006) 《工程测量规范》(GB50026-2007) 《全球定位系统(GPS)铁路测量规程》(BT10054-97) 《中铁第三勘察设计院精密工程控制测量第一次复测报告》(2011)三、人员安排及拟投入的仪器设备、软件

特长隧道贯通测量方案

清塘铺特长隧道贯通测量方案 二连浩特至广州国家高速公路 湖南省安化——邵阳公路 编制: 复核: 中铁五局集团安邵高速公路项目部 二0一0年三月五日

目录 1、工程概况 1 2、作业依据 1 3、贯通测量方案 2~5 4、贯通误差调整 6~7 5、测量质量保证措施 7

1 概述 二广国家高速公路湖南省安化(梅城)至邵阳公路第TJ1标段起点桩号K94+112.169,终点桩号K127+660,全长33.54783公里;位于益阳市的安化县和涟源市境内,重点隧道清塘铺隧道左洞全长4800m,右洞全长4775m。 1、1 坐标系统 1、1、1.平面坐标系统:清塘铺隧道进口至出口投影高为400 m。 1、1、2.高程采用1985国家高程基准。 2、作业依据,按照《公路隧道施工技术细则》(JTG/T F60—2009)和《工程测量规范》(GB50026-2007)规定的测量方法及技术指标进行作业。 2、1洞内导线测量主要技术要求 表4.2.2-3 导线测量技术要求 表4.2.3-2水准测量观测的主要技术要求 表4.2.3-3水准测量观测的主要技术要求

3、隧道测量控制方案 3、1隧道工程相向施工中线在贯通面上的贯通误差,不应大于表8.6.2的规定。 表8.6.2 隧道工程的贯通限差 3、2清塘铺隧道洞外进洞平面控制点G003、G004,I024。出口进洞平面控制点GPS029、GPS030、G005,为设计院交底三等平面控制点。进出洞口高程点I02 4、GBM3为设计院交底四等平面控制点。 3洞内控制测量设计 洞内导线的主要作用是保证隧道在平面位置上按规定的精度贯通和便于施工放样,确定一个经济、合理的施测精度,既可保证隧道准确贯通,又能节省大量的人力、物力、时间和金钱,有效提高工作效率。 进出口控制点,以相向施工进洞,贯通里程K112+008,导线长度为2700m左右。为了保证隧道顺利贯通,根据《规范》表8.6.2“横向和高程贯通精度要求”规定4~8km 隧道洞内贯通误差的限差为150 mm 的要求,以此作为测量设计的依据,不占用洞外控制网贯通精度的余额,使得设计的洞内测角、量距精度更为安全,同时,也符合《规范》规定。 根据以往洞内测量的经验,结合该隧道平面形状、洞内运输方式、通风条件等的具体情况,假设洞内直线段导线平均边长不短于200m,曲线段不短于70m,导线边距离洞内设施不小于0.2m,测距相对精度1/80000,来进行测量设计。 3.1.1洞内∑Rx2、∑dy2 的计算:(见表 1) 式中:∑Rx2—各导线点至贯通面的垂距的平方和; ∑dy2—各导线点投影至隧道中线的距离的平方和;

隧道贯通测量

三江至柳州高速公路第12合同段 上榕隧道贯通测量 专 项 施 工 技 术 方 案 编制人:张新华 审核人: 湖南省湘西公路桥梁建设有限公司 广西柳州 二零一二年七月

目录 一、编制说明 (4) 1.1编制依据 (4) 1.2编制原则 (4) 1.3采用主要标准 (4) 二、工程概况 (5) 三、隧道贯通测量技术方案 (6) 1、隧道长度 (6) 2、组织机构与岗位职责 (6) 3、岗位职责 (7) 4、职能划分 (9) 5、测量作业的任务划分 (11) 6、测量管理制度 (12) 四、其主要工作任务与内容 (13) 1、施工(贯通)测量 (13) 2、执行标准 (13) 3、隧道施工测量方案 (14)

4、控制测量 (14) 5、隧道施工测量的具体内容及要求 (16) 6、贯通误差的测定方法 (22) 7、贯通误差的调整 (24) 五、质量标准及技术要求 (31)

·一、编制说明 ·1.1编制依据 (1)三江至柳州高速公路项目土建工程施工招标文件及投标文件。 (2)三江至柳州公路工程两阶段设计施工图。 (3)三江至柳州高速公路岩土工程勘察报告。 (4)现行有效的国家及省、市有关工程设计、施工规范和规程等。 (5)我公司从事类似工程施工经验和成熟的施工工艺。 (6)我公司现有施工机械设备、施工技术及管理水平。 1.2编制原则 在深刻理解本隧道工程特点重点与难点的基础上,本着“技术领先、措施到位、资源合理、设备可靠、组织科学、风险可控”的原则。以满足业主要求为目标进行施工组织设计的编写。 编制的施工专项方案满足和响应业主的各项强制要求和技术标准。 编写的施工专项方案有针对性,技术上先进适应性强的特点。 编写的施工专项方案安全可靠,方案经济合理,工期适应。 采用IS09001质量标准全方位控制施工过程。 采用监控系统和信息反馈系统指导施工。 各种技术难题超前进行研究,以预防为主。 严格执行广西省交通建设行政管理部门对项目施工的安全,文明环保、卫生健康等有关要求,最大限度减少对周边的环境,村民生活的影响,相对良好的工程形象和社会形象。 ·1.3技术标准 (1)隧道设计行车速度100公路/小时;路基宽度26m; (2)隧道设计为高速公路双洞单向交通行车两车道分离式隧道; (3)隧道长度超过100米,设置照明;若L.N≥2×106设置机械通风,否则自然通风;

地铁隧道贯通前铺轨的测量条件探讨及分析

地铁隧道贯通前铺轨的测量条件探讨及分析 发表时间:2019-08-13T16:03:47.390Z 来源:《工程管理前沿》2019年第11期作者:张茂元 [导读] 对地铁隧道贯通前铺轨的测量条件进行探讨分析。 中交隧道局第四工程有限公司四川成都 610000 摘要:在对地铁进行建设施工的过程中,由于受到地下环境的各方面因素影响,必须要在隧道施工竣工之前完成轨道的铺设,以及进行一系列的部件安装工作。但是这个时候地下监控区间的监控范围还不确定,监控标准还存在一定的漏洞,因此,此时的铺轨施工工作存在一定的安全隐患问题。基于此,本文将对地铁隧道贯通前铺轨的测量条件进行探讨分析。 关键词:贯通测量:铺轨;控制测量 尽管地铁贯通隧道测量的标准有很多,但目前被广泛应用的主要是横向测量和竖向测量。贯通测量对于引导盾构顺利进入预留门洞具有有着重要的作用。因此,贯通测量在施工过程中十分必要。进行地铁隧道贯通测量主要是为了能够使盾构设计准确的按照既定的设计轴线推进运行,并且最终能够顺利进入到预留门洞。为了保证轨道能够顺利运行,就必须要应用严格的测量标准并进行后续检查。 一、隧道测量概述 隧道的建设主要是为了在山区和地上通行受阻碍的地区开辟出一条安全畅通的道路。建设隧道的主要工程就是挖开山体。为了使整个施工期限变短,目前大多都采用多截面的方式来增加工作面。在被挖开的截面中,如果出现对线无法真正重合的情况那么就是出现了贯通测量误差。贯通测量误差主要分为三大类型;纵向贯通误差,横向贯通误差以及竖向贯通误差。纵向贯通误差主要是指同隧道方向相一致出现的贯通误差。纵向误差是指与隧道方向垂直的贯通误差。而竖向误差是指在隧道竖直方向上所出现的贯通误差。横向误差将会导致中线左右方向出现位移,纵向误差将会导致隧道的坡度大小出现误差。因此,在隧道建设的过程中,最关键的就是把握好贯通测量的问题。只有保证贯通测量的准确性,才能使得轨道建设的安全性更强。 二、隧道建设的具体要求 1.隧道贯通测量的目的就是为了使得在施工的过程,能够确定精确标准的施工参数。同时各项基础设施和配件能按照既定的要求,在规定的施工期限内规范安装。这样既有利于施工如期完成,同时也有利于维护整个隧道施工的安全性。 2.要做好洞内洞外的数据参数测量工作。谨慎而精确的采集施工过程中的各种数据参数。同时在施工前要了解到施工过程中会出现的各项需求。有利于减少施工过程中的数据误差,对于后续工程维护也有一定的积极作用。 3.对隧道洞外的水准点以及基线要确定出明确的具体标准,在实施的过程当中,一定要按照既定标准顺利实施,确保工程的科学性以及精准性。同时必须要定时对施工进行检查和监督,重点要注意水准点以及期限的实时位置的具体情况。 4.地铁隧道贯通测量的主要目的就是为了确保在进行地铁铺轨施工的过程当中,能够准确实行一切的既定参数标准,并且使得规定航道能够如期实行。因此,隧道测量必须依据谨慎,科学严谨的标准进行。 三、洞内测量 在进行隧道测量的过程中,由于隧道的形状以及走位方式会限制隧道内导线的传递方向。最容易导致测量误差的因素主要来源于测角和测边这两大方面。而对于测量误差影响最大的通常是测角。因此,在寻找误差的过程当中,就可以将测角作为一定的误差依据来进行测量。那么最终可以通过计算得出结论的是,在洞内中所得到的测角误差都要比在导线内所测量的误差要偏大。因此,在进行调整的过程中,应当不断减少误差,改变测量精度,最终使得贯通测量的误差趋于零,使得贯通测量符合标准。 3.1洞内控制网点的布置设计 在相同参数标准的要求下,通常来说,隧道内部的测量误差往往会随着测量次数的增多而不断的增加。最终将会导致数据误差会趋于无限大。因此,在传导的过程中减少误差就变得十分必要。在隧道内部环境条件允许的情况下,应当尽可能地延伸导线内的传导空间,能够有效增加传递时间,最终以比较小的方位角,达到有效减小误差的目的。同时,为了适应相同标准的误差测量,应当使传导线的长度互相尽量保持一致,这样既有利于满足精度要求,在一定程度上又可以减少因远程观察而产生的误差。由于轨道施工时间通常来说是比较长的,因此导线点受施工影响的周期也会增加。所以,在进行设置导线端点的过程中,要尽可能地使导线端点保持相对稳定,这样就有利于避免在施工过程中发生各种环境变化,造成导线发生偏移。为了增强导线的稳定性,可以采用混凝土进行稳基固定。最后再将底部放入回填至一定高度。 3.2测量的特殊要求 由于洞内测量具有一定的危险性和差异化,因此必须要有一定的特殊方法和严格的要求进行测量。 (1)要重点关注洞口以及内站两个方位的测角。由于洞口位置较深,它的内外温差比较大,造成空气的气压不稳定。因此在进行测角的测量过程中,容易发生成像虚化的现象。这会对于施工的准确性有一定程度的影响。同时,光角度的影响会显得更加严重。这些问题都会对测角的测量造成一定的影响。同时对于不同测量地点之间而言,他们之间的距离通常都比较远,那么,这些测角之间的差异对于隧道贯通测量都有着不同程度的影响。因此,在进行测量内外两个测角时,应当选择适宜的天气状况下进行测量。这样就能够充分的减少测量误差,得到更加满意的测量结果。 (2)在隧道测量的过程当中,应当尽量保持测量的标准性和严谨性。适当的放宽误差的标准。因为在测量的过程中由于环境影响产生误差是不可避免的。那么就可以说有些误差是可以直接忽略的,而有些误差要计入一定的参考数据当中。因此,工作人员更要加强对于误差因素的判断,判断误差是否为可忽略误差如果是必要误差就必须要记入到实际的误差监测数据值中去。 (3)可以明显看出的是,水下测量仪器液与照相机的原理相同。所以在洞内对测量仪器进行测量时,应当保持干净卫生环境和稳定的底座。在测量截面要减少障碍物的阻挡。尽量在光线条件良好的条件下进行测量观察,在确定环境周围没有障碍的条件下,开始测量。 四、测量过程中应当注意的问题 4.1分工具体,职业明确 隧道测量并不仅仅关乎于测量人员的责任,这项工作更需要整个设计团队和施工人员的共同配合。第一步就是要做好工作资料的审核,确保一切施工处于一个相对安全和严谨的过程当中。测量人员要依据相关的测量标准要求准确如实地进行记录与反映。同时仔细排查施工现场是否存在一定安全隐患问题。有关人员一定要明确相关职责要求,严格按照各种的标准要求办事,确保每个工作人员都能够恪尽

相关主题
文本预览
相关文档 最新文档