当前位置:文档之家› 设计2000立方米热风炉的炼铁课程设计

设计2000立方米热风炉的炼铁课程设计

设计2000立方米热风炉的炼铁课程设计
设计2000立方米热风炉的炼铁课程设计

附件一

湖南工业大学

课程设计

资料袋

冶金工程学院(系、部)2010 ~ 2011 学年第 2 学期课程名称炼铁课程设计指导教师刘竹林职称教授

学生姓名夏雨专业班级冶金091 学号01234567

题目设计向2000立方米高炉提供热风的热风炉

成绩起止日期2011 年5月16 日~2011 年5 月29 日

目录清单

附件二湖南工业大学

课程设计任务书

2010 —2011 学年第 2学期

冶金工程学院(系、部)冶金技术专业冶金091 班级课程名称:炼铁课程设计

设计题目:设计向2000立方米高炉提供热风的热风炉

完成期限:自2011 年 5 月16 日至2011 年 5 月29 日共 2 周

指导教师(签字):年月日系(教研室)主任(签字):年月日

(课程设计名称)

设计说明书

向2000立方米高炉提供热风的热风炉

起止日期:2011 年 5 月16 日至2011 年5 月29 日

学生姓名夏雨

班级冶金091

学号01234567

成绩

指导教师(签字)

冶金工程学院(部)

2011年月日

湖南工业大学冶金工程学院课程设计答辩评价表

湖南工业大学冶金工程学院课程设计评阅表

前言

从冶炼角度看,风是高炉冶炼的重要原料之一。高炉发展史充分说明改进鼓风对高炉的发展有着极其重要的作用。风也是强化高炉冶炼的最积极因素,就现在已采用的新技术来看,风的含义不仅与鼓风机有关,还和热风温度、喷吹、富氧、脱湿等技术的应用即风的质量有关。热风炉为主的热风系统是综合鼓风系统的重要内容。

1828年美国开始使用热风。实践和理论均证明:热风不仅是降焦、增产和

提高生铁质量的重要措施之一,也为提高所喷吹燃料的燃烧率,为改善喷吹效果和加大喷吹量提供有利条件。因此国内外高炉均致力于提高风温。热风炉系统的重要作用就是加热冷风,降低焦比,提高生产效益。现代高炉普遍采用蓄热式热风炉,由于热烧(即加热格子砖)和送风(即冷却格子砖)是交替工作的,为保证向高炉连续供风,故每座高炉至少配置两座热风炉,一般配置三座,大型高炉配置四座为宜。目前蓄热式热风炉有三种基本结构形式,即内热式热风炉(含传统型和改进型)、外燃式热风炉、顶燃式热风炉。本设计指导书所设计的类型是内热式热风炉。在设计过程中也可广泛地查阅各种参考资料,设计目前国内外比较先进的改进型和外燃式热风炉。

本次设计的主要目的是培养学生理论联系实际,分析问题、解决问题的能力。本热风炉设计的重点在了解热工计算,其热工计算主要包括三个方面的内容,即燃烧计算,简易计算,砖量计算。设计过程中尽可能应用较成熟技术,充分考虑合理性和先进性的要求。

目录

1热风炉本体结构设计 (2)

1.1炉基的设计 (3)

1.2炉壳的设计 (3)

1.3炉墙的设计 (4)

1.4拱顶的设计 (5)

1.5蓄热室的设计 (6)

1.6燃烧室的设计 (6)

1.7炉箅子与支柱的设计 (7)

2燃烧器选择与设计 (8)

2.1金属燃烧器 (8)

2.2陶瓷燃烧器 (8)

3格子砖的选择 (10)

4管道与阀门的选择设计 (15)

4.1管道 (15)

4.2阀门 (16)

5热风炉用耐火材料 (18)

5.1硅砖 (18)

5.2高铝砖 (18)

5.3粘土砖 (18)

5.4隔热砖 (18)

5.5不定形材料 (19)

6热风炉的热工计算 (22)

6.1燃烧计算 (22)

6.2简易计算 (29)

6.3砖量计算 (31)

7参考文献 (32)

1热风炉本体结构设计

热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。冷风被加热并通过热风管道送往高炉。

目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。

传统内燃式热风炉(如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。

图1-1内燃式热风炉

1-煤气管道;2-煤气阀;3-燃烧器;4-燃烧室;5-热风管道;

6-热风阀;7-大墙;8-炉壳;9-拱顶;10-蓄热室;11-隔墙;

12-热风管;13-冷风阀;14-烟道管;15-支柱;16-炉箅子

我国实际的热风炉尺寸见表1-1。

表1-1我国设计的热风炉尺寸表

1.1炉基的设计

由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。地基的耐压力不小于2.0~2.5kg/cm2,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm,以防水浸基础由A3F或16Mn钢筋和325号水泥浇灌成钢筋混泥土结构。土壤承载力不足时,需打桩加固。

生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。

1.2炉壳的设计

热风炉的炉壳由8~20mm厚的钢板焊成。对一般部位可取:δ=1.4D(mm)。开孔多的部位可取:δ=1.7D(mm), δ为钢板厚度(mm),D为炉壳内径(m),钢板厚度主要根据炉壳直径、内压、外壳温度、外部负荷而定。炉壳下部是圆柱体,顶部为半球体。为确保密封炉壳连同封板焊成一个不漏气的整体。由于炉内风压较高,加上炉壳耐火砖的膨胀,使热风炉底部承受到很大的压力,为防止底板向上抬起,热风炉炉壳用地脚螺栓固定在基础上,同时炉底封板与基础之间进行压力灌浆,保证板下密实,也可以把地脚螺栓改成锚固板,并在底封板上灌上混泥土。将炉壳固定使其不变形,或把平底封板加工成蝶形底,使热风炉成为一个手内压的气罐,减弱操作应力的影响。在施工过程中对焊接必须进行X光探伤检验,要求炉壳椭圆度不大于直径的千分之二,整个中心线的倾斜(炉顶中心与炉底中心差)不大于30mm。为了保证炉壳和炉内砌砖的密封性,在砌砖前后要试漏、试压,检查砌砖前试验压力为0.3~1.5kg/cm2,砌砖后工作压力的1.5倍试压,每小时压力降<=1.5%.蓄热室、燃烧室的拱顶和连接管处采用(韧性耐龟

裂钢板)含锰、铝的镇静钢。高温区炉壳外侧用0.5mm铝板包覆,铝板与炉壳间填充后3mm保温毡,使炉壳温度控制在150~250℃,防止内表面结露,也防止突然降温(暴雨)使炉壳急冷而产生应力。炉壳内表面涂硅氨基甲酸乙醋树脂保护层,防止NO X与炉壳接触。

1.3炉墙的设计

炉墙一般由耐火层、绝热层和隔热层组成。作用是保护炉壳和减少热损失。各层厚度应根据炉壳温度和所用耐火材料的界面温度确定。如图1-2所示。

因炉墙温度自上而下逐渐升高、所以不同高度耐火层和绝热层厚度不同。一般下部区域温度低、荷重大,宜选用较厚耐火砖,减薄的绝热层,所留膨胀缝可小。上部高温区,荷重小,但为了减少热损失,应增加绝热层的厚度,耐火层可较薄。

炉墙通常由345mm耐火砖砌筑,一般风温水平的热风炉和炉壳接触的是65mm 后的硅藻土砖绝热层,绝热层和耐火砖之间是60~145mm后的干水渣填料层,用以缓冲膨胀。两层绝热砖之间填以50~90mm后的干水渣或硅藻土或石粉。隔墙上部由于燃烧室位置在热风炉内的一侧,靠格子砖的隔墙为两面加热,而靠热风炉大墙一侧的隔墙为一面加热。因此,前者的温度比后者高,产生的高温蠕变大,而耐火材料不适应高温时,就使燃烧室向格子砖方向倾斜,并进而使上部格砖严重错孔。

a -多用与燃烧室侧

b -多用于蓄热室侧

图1-2 炉墙的组成

1.4拱顶的设计

拱顶是连接燃烧室和蓄热室的砌筑结构,它长期处于高温状态工作,应选用优质的内火材料,并保证砌体结构的稳定性,燃烧时高温烟气流均匀地进入蓄热室。内燃式热风炉拱顶有半球形,锥型,抛物线形和悬链形,目前国内传统内燃式热风炉一般多采用半球形。它可使炉壳免受侧向推力,拱顶荷重通过拱脚正压在墙上,以保持结构稳定性。应加强热风炉上部与拱顶的绝热保护,鉴于拱顶支在大墙上,大墙受热膨胀,受压易于破坏,故将拱顶与大墙分开,支在环形梁上,使拱顶砌成独立的支撑结构。采用抛物线形拱顶和悬链形拱顶稳定性较好,悬链形拱顶的气流也较均匀,但结构较复杂。

图1—3 热风炉锥形拱顶结构

在拱顶内衬的内火砖材质,决定拱顶温度水平,为了减少结构质量和提高拱顶的稳定性,应尽量缩小拱顶的直径,并适当减薄砌体的厚度。拱顶砌体厚度减薄后,其内外温度差降低,热应力减少,可相当延长拱顶寿命。中型热风炉砖厚以300~500mm为宜,大型高炉热风炉砖厚以350~400mm为宜。但是砖型过多制造麻烦,过少则施工困难。国内部颁标准以有了3组9种拱顶定型砖适用于砌筑内部半径为2100~3900mm的半球形拱顶。拱顶的下部第一层砖为拱脚砖。常用钢圈加固,使炉壳少受水平力作用。在拱顶的正中为特制的炉顶盖砖,上有安装测拱顶温度的电热偶孔。为了提高热效率,减少热损失好保护炉壳,拱顶的隔热是十分重要的。高风温热风炉拱顶隔热砖的厚度为400~500mm,一般由2~3层隔热砖组成。

表1-2 热风炉拱顶耐火衬材质与炉顶温度的关系

材质粘土砖高铝砖硅砖

标号RN-38 RL-48 L2-65 DG-95

炉顶温度1250 1350 1450 1550

1.5蓄热室的设计

蓄热室是热风炉进行热交换的主体,它由格子砖砌筑而成。砖的表面就是蓄热室的加热面,格子砖块作为贮热介质,所以蓄热室的工作既要传热快又要贮热多,而且要有尽可能高的温度。格子砖的特性对热风炉的蓄热能力,换热能力以及热效率有直接影响。

蓄热室断面积,一般是从选定的热风炉直径扣除燃烧室断面积而得到的,它应该用填满格子砖的通道面积中的气流速度来核算。为了保证传热速度,要求气流在紊流状态流动,即雷诺数大于2300。由于气体在高温下粘度增大,而且格孔小不易引起紊流,故现代高风温热风炉要求有较高的流速以满足传热的要求,在生产中常有这样的情况,蓄热面积不少,顶温很高,但风温上不去,烟道温度却上升很快,其原因主要是流速低造成的。

蓄热室工作的好坏,风温和传热效率如何,与格孔大小、形状、砖量等也有很大的关系。

但在燃烧室两侧蓄热室狭窄处存在死角,烟气在蓄热室断面上分布不均,相对的减少了蓄热室面积。眼镜形燃烧室结构稳定性差,热应力小,当量直径小,不利于煤气燃烧:但蓄热室死角小,烟气流分布均匀,有效面积利用较好。复合型兼备上述两种形状的优点,设计上采用多。

1.6燃烧室的设计

燃烧室是煤气燃烧的空间,位于颅内的一侧,它的断面形状有三种,即圆形、眼睛形、复合型。圆形燃烧室形状简单,稳定性好,热应力小,当量直径大

有利于煤气燃烧:

1-燃烧室 2-蓄热室

图1-4 燃烧室断面形状

燃烧室隔墙一般由两层互不错缝的高铝砖砌筑,大型高炉用一层345mm和一层230mm高铝砖砌成,中小高炉用两层230mm高铝砖砌成。两层之间彼此无约束,在受热膨胀时互不受阻碍。燃烧室比蓄热室要高出300~~500mm,目的是使烟气流在蓄热室内分布均匀一些。

1.7炉箅子与支柱的设计

蓄热室全部格子砖都通过炉箅子支持在支柱上,当废气温度不超过350℃,短期不超过400℃时,用普通铸铁就能稳定的工作,当废气温度较高时,可用耐热铸铁(Ni0.4%~0.8%,Cr0.6%~1.0%)或高硅耐热铸铁。

为避免堵住格孔,支柱和炉箅子的结构应和格孔相适应。支柱高度要满足安装烟道哦冷风管道的净空需要,同时保证气流畅通。炉箅子的块数与支柱相同,而炉箅子的最大外形尺寸,要能从烟道口进出。

热风炉的有关计算

热风炉的有关计算

5.1.1 计算的原始数据 高风量 1381686008.2302'=?=f V 标米3/小时 热风出口处的平均温度 ,1100R f t =℃ 冷风入口温度 ,30L f t =℃ 规定的拱顶烟气温度14001=y t ℃ 平均废气出口温度 2502=y t ℃ 净煤气温度 35=m t ℃ 助燃空气温度 20=k t ℃ 热风炉座数 3=n 座 热风炉工作制度“二烧一送”,其中送风周期1=f τ小时,燃烧周期时间 9.1=r τ小时,换炉时间1.0=?τ小时,总的周期时间3=?++=ττττr f z 小时。 高炉煤气成分(干)%: C O 2 C O H 2 C H 4 N 2 共计 2 1.07 2 0.45 1 .29 0.63 5 6.57 10 0.00 5.1.2 燃烧计算 (1)煤气成分换算 净煤气在35℃时饱和水含量为47.45克/标米3,1标米3干煤气的总含水量为 45.6700.2045.47=+克/标米3。 换算水蒸气的体积百分含量: %74.745 .6760.80345 .6710060.803100222=+?= += O H O H W W O H 则湿煤气成分的换算系数 923.0100 74 .71001001002=-=-=O H m 湿煤气成分的体积含量(%): 2CO 37.18923.09.19=?

CO 89.23923.08.25=? 2H 369.0923.04.0=? 4CH 554.0923.06.0=? O H 2 74.7 2N 09.49923.019.53=? 总和 00.100 (2)煤气发热值计算 S H H C CH H CO Q H P 242423.551428.857.252.30++++= 千卡/标米3 式中 S H H C CH H CO 24242,,,,——煤气中各成分的体积含量,%。 49.778554.08.85369.07.2589.232.30=?+?+?=P H Q 千卡/标米3 (3)燃烧1标米3煤气的空气需要量 21 5.1325.05.02242420S H O H C CH CO H L +-+++= 标米3/标米3煤气 则 63.021554.00.289.235.0369.05.00=?+?+?=L 标米3/标米3 煤气 计算实际空气需要量,设过剩空气系数20.1=α,则 756.063.020.10=?=?=L L α 标米3/标米3煤气 (4)燃烧1标米3煤气生成的烟气量百分组成 助燃空气中带入的水忽略不计,按下式计算: 22222,SO O N O H CO m y V V V V V V ++++= 标米3/标米3煤气 )22(01.0'22224242L O H O H S H H H C CH V O H ?+++++= )2(01.042422H C CH CO CO V CO +++= )79(01.022L N V N += L V O )1(21.02-=α S H V SO 201.02= 式中 S H O CH CO CO 2242,,,,等——湿煤气中各成分的体积含量,%; '2O H ——助燃空气中水的体积含量,%。 则 43.0)554.037.1889.23(01.02=++?=CO V 16.0)768.074.7369.074.7554.02(01.02=?+++??=O H V 10.1)768.07909.49(01.02=?+?=N V 032.0768.0)120.1(21.02=?-?=O V

热风炉自动燃烧

营口钢厂热风炉自动燃烧控制的方案 一、背景说明: 热风炉是高炉炼铁生产过程中的重要设备之一,是提供高炉热风热量的,其提供的热量约占高炉炼铁生产耗热的25%左右,热风温度对高炉炼铁生产产量和节能至关重要,热风炉风温对提高高炉炼铁的许多经济技术指标非常明显,其主要表现在:降低焦比、提高煤比、提高产量。 热风炉的主要作用是把鼓风机站供来的冷风加热到高炉要求的温度,供高炉生产用,热风炉是一种利用蓄热原理工作的换热设备,其工作原理决定它的工作方式是循环周期性的。需要多座(通常是3到4座)交替循环工作,才能满足高炉连续生产的需要。每座热风炉工作又分燃烧阶段和送风阶段。 燃烧阶段:将热风炉内的蓄热体加热,先将冷风阀关闭,煤气和助燃空气按一定的空燃比燃烧,烟气通过烟道排出。 送风阶段:鼓风机站送来冷风进入热风炉与蓄热体充分热交换,达到一定温度时由热风管道送入高炉。对每一座热风炉是一种序批式生产过程。不同的送风制式有:两烧一送,交错并联,两烧两送,半并联方式。 这种序批式生产过程是对燃烧阶段和送风阶段在相对时间内互相 衔接切换,只有燃烧自动化的实现,才有可能实现燃烧阶段和送风阶段相互按照管理要求切换,达到最大节能效果。实现热风炉优化操作。热风炉在其结构上有多种形式,其工作原理是基本相同的,而热风炉的自动化控制也基本相同,主要分为燃烧控制和各设备间的逻辑顺序控制,顺序控制基本能够实现自动。 热风炉自动燃烧控制,据掌握的资料情况和现在的文献看,除引进的高炉外,实现有效的自动燃烧控制很少见,其热风炉的燃烧控制几乎都是在操作站画面上手动(HMI手动),由于手动受人为的因素影响,一人不可能同时操作煤气和助燃空气两个调节阀,就不可避免的出现燃烧状况时好时坏的波动现象。也不能保证空燃比的恒定,经常造成时而煤气过量不能充分燃烧,时而空气过量温度烧不上来,达不到节省能源效果。 二、具体说明: 利用PLC控制系统控制热风炉自动燃烧的方法: 系统构成除工艺和电气的相关设备外,主要仪表设备包括PLC控制系统及热风炉操作站,热风炉各部位温度检测,煤气总管压力调节阀,助燃空气压力调节阀及助燃风机调节门,每座热风炉煤气流量检测和流量调节阀、助燃空气流量检测和流量调节阀,热风炉烟道烟气

热风炉作用

热风炉———高炉高风温的重要载体 来源:中国钢铁新闻网作者:毛庆武张福明发布时间:2008.04.29 高风温是现代高炉的重要技术特征。提高风温是增加喷煤量、降低焦比、降低生产成本的主要技术措施。近几年,国内钢铁企业高炉的热风温度逐年升高,2007年重点企业热风温度比上年提高25℃。特别是新建设的一批大高炉(大于2000立方米)热风温度均超过1200℃,达到国际先进水平。如2002年后,首钢技术改造或新建高炉的热风温度均实现高于1200℃的目标。 热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。 高风温有赖热风炉的结构优化 20世纪50年代,我国高炉主要采用传统的内燃式热风炉。这种热风炉存在着诸多技术缺陷,且随着风温的提高而暴露得更加明显。为克服传统内燃式热风炉的技术缺陷,20世纪60年代,外燃式热风炉应运而生。该设备将燃烧室与蓄热室分开,显著地提高了风温,延长了热风炉寿命。20世纪70年代,荷兰霍戈文公司(现达涅利公司)对传统的内燃式热风炉进行优化和改进,开发了改造型内燃式热风炉,在欧美等地区得到应用并获得成功。与此同时,我国炼铁工作者开发成功了顶燃式热风炉,并于上世纪70年代末在首钢2号高炉(1327立方米)上成功应用。自上世纪90年代KALUGIN顶燃式热风炉(小拱顶)投入运行,迄今为止在世界上已有80多座KALUGIN(卡鲁金)顶燃式热风炉投入使用。 截至目前,顶燃式热风炉由于具有结构稳定性好、气流分布均匀、布置紧凑、占地面积小、投资省、热效率高、寿命长等优势,已在国内几十座高炉上应用。首钢第5代顶燃式热风炉自投产以来,已正常工作22年3个月,曾取得月平均风温≥1200℃的业绩。生产实践证实,顶燃式热风炉是一种长寿型的热风炉,完全可以满足两代高炉炉龄寿命的要求。然而,由于国内有的企业高炉煤气含水量高、煤气质量差,致使顶燃式热风炉燃烧口出现过早破损;而且采用的大功率短焰燃烧器在适应助燃空气高温预热(助燃空气预热温度≥600℃)方面还存在一些技术难题。因此,国内钢铁企业进行了技术改造,Corus(康力斯)高风温内燃式热风炉也因此得到应用。 合理的热风炉配置保持高炉稳定 根据实践,现代大型高炉配置3~4座热风炉比较合理。大型高炉如果配置4座热风炉,可以实现交错并联送风,能提高风温20℃~40℃,在炉役的中后期,还可以在1座热风炉检修的情况下,采用另外3座热风炉工作,使高炉生产不会出现过大的波动。目前,国内外许多大型高炉都配套建设了4座热风炉,但采用3座热风炉可以大幅度降低建设投资,减少占地面积,也同样具有非常大的吸引力。随着设计和安装大直径热风炉条件的改进,热风炉设计的日趋合理,热风炉使用的耐火材料质量也得到提高,设备更经久耐用,控制系统也日益成熟可靠,形成了多种多样的热风炉高风温和长寿技术,使得热风炉操作可以更加平稳可靠,从而保证了高炉稳定操作。以此为基础,现代热风炉的发展方向转变为减少热风炉座数、延长热风炉寿命、强化燃烧能力、缩短送风时间、减少蓄热面积、回收废气热量、提高总热效率上。另外,尽量缩短送风时间的操作方式也得到重视,基于新设计理念和完备的技术支撑,国内钢铁企业将热风炉数量由4座减少为3座,热风炉的操作模式改为“两烧一送”,风温的调节控制依靠混风实现,也同样达到了高风温的效果。 提高加热炉传热效率和寿命是可靠保证

14.热风炉有关计算实例.

吗 10-1 煤气成分如何换算?………… 10-2 煤气低发热值如何计算? 10-3 实际空气需要量如何计算?………………………………………… 10-4 空气过剩系数如何计算? 10-5 混烧高热值煤气如何计算?………………………………………… 10-6 理论燃烧温度如何简易计算?……………………………………… 10-7 热风炉需要冷却水压力如何计算?………………………………… 10-8 热风炉热效率如何计算?………………………………………… 10-9 高炉煤气发生量的理论计算与简易计算如何? 10-10 煤气标准状态下的重度如何计算?…………………………… 10-11 煤气流速如何计算?……………………………………………… 10-12 烟道废气的流速如何计算?……………………………………………… 10-13 炉顶煤气取样管如何计算?……………………………………………… 10-14 煤气管道盲板与垫圈如何计算?……………………………… 10-1 煤气成分如何换算? 热风炉燃烧所用的高炉煤气常以干煤气成分表示,实际上是含有水分的。因 此计算时要先将干煤气成分换算成湿煤气成分。 已知煤气含水的体积百分数,应用下式换算。 100 1002O H V V -? =干湿 (10-1) 若已知每21m3干煤气在任意温度下的饱和水蒸汽量(g/m3),可以用下式换算。 干干 湿V g V O H ?+= 2124.0100100 (10-2) 式中:湿V ——湿煤气各组成的含量,%; 干V ——干煤气各组成的含量,%;

O H 2——湿煤气中含水量,%; 干 O H g 2 ——13m 干煤气所能吸收的饱和水蒸汽量,3/m g 。 计算实例: 已知某热风炉使用高炉煤气,其干煤气成分如下:CO2 18.5%,CO 23.5%,H2 1.5%, N2 56.5%,并已知煤气含水5%,求湿煤气成分。 解:根据公式: 100 1002O H V V -? =干湿 100 5100-? =干V =0.95干 V 则:CO2 18.5×0.95=17.575% CO 23.5×0.95=22.325% H2 1.5×0.95=1.425% N2 56.5×0.95=53.675% H2O 5% 合计100% 计算实例: 某厂所在地年平均气温为20℃,该厂热风炉采用冷高炉煤气,其干成分为:CO 23.6%,H2 3.1%,CO2 17.4%,CH4 0.1%,O2 0.1%,N2 55.7%,试计算高炉煤气的湿成分。 解:根据公式: 干干 湿V g V O H ?+= 2124.0100100 查表可知在20℃下13m 干煤气所能吸收的饱和水蒸汽量为193/m g 所以干干 湿V g V O H ?+= 2124.0100100 干V ??+= 19 124.0100100

热风炉送风温度控制系统的设计说明

学号: 课程设计 题目热风炉送风温度控制系统设计 学院自动化学院 专业自动化卓越工程师 班级自动化zy1201班 姓名 指导教师傅剑 2015 年12 月8 日

课程设计任务书 学生:专业班级:自动化zy1201 指导教师:傅剑工作单位:理工大学 题目: 热风炉送风温度控制系统的设计 初始条件:炼钢高炉采用燃式热风炉,燃烧所采用的燃料为高炉煤气和转炉煤 气。两种燃料混合后进入热风炉燃烧室,再与助燃空气一起燃烧,要求向高炉送 风温度达到1350 ℃,则炉顶温度必须达到1400 ℃±10℃。 要求完成的主要任务: 1、了解燃式热风炉工艺设备 2、绘制燃式热风炉温度控制系统方案图 3、确定系统所需检测元件、执行元件、调节仪表技术参数 4、撰写系统调节原理及调节过程说明书 时间安排 11月3日选题、理解课题任务、要求

11月4日方案设计 11月5日-11月8日参数计算撰写说明书 11月9日答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 前言 (1) 1.热风炉工艺 (2) 1.1主要结构............................................................................. .. (2) 1.2工作方式 (3) 1.2.1 直接式高净化热风炉 (3) 1.2.2 间接式热风炉 (3) 1.3工作原理 (3) 1.4高炉炼铁、转炉炼钢工艺流程 (4) 2.热风炉温度控制方案设计 (7) 2.1熟悉工艺过程,确定控制目标 (7) 2.2选择被控变量 (7) 2.3选择操纵变量 (7)

热风炉

直燃式燃煤热风炉Direct Coal—Fired Hot Air Furnace 工作原理Principle of Operation BHL-Z邦华直燃式燃煤热风炉炉由BHM燃煤机、高温气体净化沉降室和配风室组成。热风炉输出热量为50~2000×104 kcal/h,输出温度为100~1200℃。 原煤(烟煤)通过上煤机加入到燃煤机的煤斗中,再由链条炉排匀速送入燃烧室,在助燃鼓风机鼓入的空气作用下剧烈燃烧,煤燃烧所产生的含尘高温烟气进入高温气体净化沉降室内进行二次燃烧,烟气中所夹带的少量粉尘在净化室内经高温熔融、聚合、沉降。净化室内出来的洁净热风掺入一定量的冷风,能够提供不同温度的洁净热烟气,可为各类大型干燥系统(如流化床、闪蒸、喷雾塔、回转圆筒、烘房、气流干燥器等)提供热源。连续供热风温度稳定性±5℃。煤渣由燃煤机另一端的除渣机排出。 The BHL-Z Direct Coal-Fired Hot Air Furnace consist of BHM Coal-Fired machine, hot flue gas purity room and air feeding room. The range of heat output is from 50×104 kcal / h to 2000×104 kcal / h and the range of temperature output is from 100℃to 1200 ℃. R aw Coal(Bituminous Coal) is fed into coal scuttle through coal feeder, and then delivered into combustion chamber by the chain grate stoker. With the air of combustion blower, the coal burned and generated high temperature flue gas with dust. The hot flue gas with dust burned again and the dust fused, polymerization and deposition in the purity room, certain amount of fresh air is mixed into the cleaned hot flue gas (about 1000 ℃,drawing from the purity room) to adjust the temperature of the hot flue gas in the air feeding room. And then the degree temperature hot flue gas flows into the various large-scale drying systems (such as fluidized bed, flash dryer, spray tower, rotating drum dryer, drying room, etc.). The fluctuation range of continuous heating air temperature is about ± 5 ℃. The cinder is discharged by the auto-deslagging. 优势Advantages 1)煤种适应性广; 2)燃烧充分,燃烧效率高,热效率>95%. 3)输出热负荷稳定,机械燃烧,操作简单,调节非常方便;

热风炉设计说明书

目录 第一章热风炉热工计算 (1) 1.1热风炉燃烧计算 (1) 1.2热风炉热平衡计算 (6) 1.3热风炉设计参数确定 (9) 第二章热风炉结构设计 (10) 2.1设计原则 (10) 2.2 工程设计内容及技术特点 (11) 2.2.1设计内容 (11) 2.2.2 技术特点 (11) 2.3结构性能参数确定 (12) 2.4蓄热室格子砖选择 (13) 2.5热风炉管道系统及烟囱 (15) 2.5.1顶燃式热风炉煤气主管包括: (15) 2.5.2顶燃式热风炉空气主管包括: (16) 2.5.3顶燃式热风炉烟气主管包括: (16) 2.5.4顶燃式热风炉冷风主管道包括: (17) 2.5.5顶燃式热风炉热风主管道包括: (17) 2.6 热风炉附属设备和设施 (18) 2.7热风炉基础设计 (21) 2.7.1 热风炉炉壳 (21) 2.7.2 热风炉区框架及平台(包括吊车梁) (21) 第三章热风炉用耐火材料的选择 (22) 3.1耐火材料的定义与性能 (22) 3.2热风炉耐火材料的选择 (22) 参考文献 (25)

第一章热风炉热工计算 1.1热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表1.1。 表1.1 煤气成分表

热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为 2.3t/m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=2.25h,送风期T f=0.75h,燃烧期Tr=1.4h,换炉时间ΔT=0.1h,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下: CO:126.36KJ , H2:107.85KJ, CH4:358.81KJ, C2H4:594.4KJ。则煤气低发热量: Q DW=126.36×30.3+107.85×12.7+258.81×1.7+594.4×0.4=6046.14 KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=1.1。燃烧计算见表2.13。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=25.9/21=1.23 m3。 (3)实际空气需要量La=1.1×1.23=1.353 m3。

热风炉的热工计算

热风炉的热工计算 1燃烧计算 煤气成分的确定: 表1已知煤气(干)成分(% (1)干煤气成分换算成湿煤气成分 若已知煤气含水的体积百分数,用下式换算: V湿= V F X (100 —氏0)/ 100X 100% (1) 若已知干煤气含水的重量(g/m 3)则用下式换算: ▼湿=V F X 100/(100+ 0.124 gH2。)X 100% (2) 以上两式中 V湿一一湿煤气中各组分的体积含量,% V F――干煤气中各组分的体积含量,% H2O ——湿煤气中含水体积,% gH2O ——干煤气中含水的重量,g/m3(忽略机械水含量) 查“空气及煤气的饱和水蒸汽含量(气压101325Pa)表”知30E时煤气的饱和含水含量为35.10 g/m3,代入式(2)即得湿煤气成分,如表2。 表2煤气成分整理表(%) (2)煤气低发热量的计算。 煤气中含可燃成分的热效应见表3 表3 0.01m3气体燃料中可燃成分的热效应 煤气低发热量Q DW的计算: Q DW = 126.36 CO+107.85 H2+358.81 CH4+594.4 C2H4+ ...... +233.66 H2S KJ / m =126.36 X 23.96 +107.85 X 1.34+358.81 X 0.19 =3240.2785 KJ / m3

(3)焦炉煤气的加入量计算: 表4焦炉煤气成分% 理论燃烧温度估算: 取炉顶温度比热风温度高200°C,燃烧温度比拱顶温度约高80°C o 则T里=T里+200C +80C= 1480C 所要求的最低发热值: 据经验公式:T i = 0.158 Q低+770 Q 低=(T1 -770) / 0.158 = 4494 KJ / m3 加入焦炉煤气量:(Q焦大约为17000?18500 KJ/ m3) Q焦=126.36 CO+107.85 H2+358.81 CH4+594.4 C2H4 =126.36*7+107.85*58+358.81*25+594.4*3.5 =18190.47 KJ/m 3 V= ( Q低—Q DW ) / ( Q焦低—Q DW ) = (4494- 3240.2785) /(18190.47 —3240.2785)?8.4 % 故煤气干成分加入量为1 —8.4 %= 91.6 % 则混合煤气成分: V CO2 = 18.4 %X 91.6 % + 3.5 %X 8.4 %= 17.1484 % V C O = 25%X 91.6 % + 7%X 8.4 % = 23.488 % V H2 = 1.4 %X 91.6 %+ 58%X 8.4 % = 6.1544 % V C H尸0.2 %X 91.6 % + 25%X 8.4 %= 2.2832 % 55%X 91.6 % + 3%X 8.4 % = 50.632 % VUn尸3.5 %X 8.4 % = 0.294 % 换算成混合湿煤气成分: V湿CO2= V FCO2X 100/(100 + 0.124 gH2O) X 100%= 16.43 % V湿CC=V F CO X 100/(100 + 0.124 gH2O) X 100%= 22.51 % V湿H2= V F H2X 100/(100 + 0.124 gH2O) X 100%= 5.9 % V湿CH4=V F CH4X 100/(100 + 0.124 gH2O) X 100% = 2.19 % V湿N2= V F N2X 100/ (100 + 0.124 gH2O) X 100% = 48.52 % V湿cnHn= V FcnHn X 100/(100 + 0.124 gH 2O) X 100%= 0.28 % 表5混合煤气成分整理表(%

热风炉技术方案

山西安龙重工有限公司热风炉系统设备 技 术 方 案 湖北神雾热能技术有限公司 2009.12.02

一、前言 该项目是遵循山西安龙重工有限公司所提技术要求设计,所采用的技术核心主要是目前国内外先进的燃气半预混双旋流燃烧技术等。 二、设计基础 1、原始参数及现场条件 1).处理原料 待定 2).处理能力:待定 2 热风炉工况参数 1).最大热负荷:2000×104Kcal/h 2).热风炉出口热风温度:50~300℃ 3).热风炉出口热风流量:187000 Nm3/h(在300℃工况下) 4).燃料参数 煤气(具体种类待定):热值约1000 Kcal/Nm3 压力:6~8 kPa 5).液化气或其它高热值燃气(启炉和长明火燃料) 热值:20000 kcal/Nm3 压力:10kPa 6).煤气吹扫气参数 氮气:压力:~0.2 MPa 三、方案内容

2、耐火材料选型参数 低水泥高铝浇注料:用于炉膛耐火内衬 容重~2.3kg/m3 烧后抗压强度110℃×24h ≥15MPa 1000℃×3h ≥25MPa 烧后线变化率1000℃×2h 0~-0.2% 耐火度>1700℃ 3、热风炉设备特点综述 热风炉是根据终端设备对温度的要求,输出适合温度和一定流量热烟气的设备,在满足此基本要求的基础之上,我们重点考虑了如下方面: a)热风炉在运行过程中对炉内温度实现检测,满足终端设备所 需要风温及风量。燃烧器调节范围大,火焰长度、扩散角均 能和炉子合理匹配,且配有自动点火和火检,保证安全稳定 运行; b)炉子采用合理的钢结构来支撑本体;选用性能良好的耐火材 料砌筑,采用二次风冷却的方式,确保炉体表面温度符合技 术要求; c)合理配置炉子检修口、观察孔,结构设计做到开启灵活,关 闭严密,减少炉气外溢和冷风吸入的现象; d)配备完善的热工控制系统设备,自动化程度高。确保严格的 空燃比和合理的炉压等控制,使热损失减少到最小; e)满足低耗、节能的工艺要求; f)在环保方面,烟气中有害成分游离碳和NO X通过强化燃料

450立方米热风炉设计计算

450m3高炉自身空煤气双预热热风炉设计计算 热风炉的加热能力(1m3高炉有效容积所具有的加热面积) 一般为80~100m2/m3或更高。前苏联5000m3的高炉蓄热面积为104 m2/m3,设计风温1440℃,为目前最高设计风温水平。 蓄热体面积120×450=54000 m2,设计三座热风炉,每座蓄热面积为18000m2,蓄热体单位体积传热面积48 m2/m3,每座热风炉蓄热体体积为375 m3。 蓄热室设计中,烟气流速起主导作用。小于100 m3炉容,烟气流速1.1~1.3Nm/s。炉容255~620 m3,烟气流速1.2~1.5Nm/s。炉容大于1000 m3,烟气流速1.5~2.0Nm/s。 根据资料核算,参考以上烟气流速差异,设计时可采用:蓄热体高度L/蓄热体直径D的方法进行计算。炉容大于1000 m3,L/D=3.5~4;炉容255~620 m3,L/D=3~3.5。 热风炉结构计算实例 450m3高炉热风炉设计计算。为实现热风炉外送热风温度~1150℃,确定热风加热能力为120 m2/m3,如果设置三个热风炉,则每个热风炉的蓄热面积为18000 m2。 热风炉结构的确定:假设蓄热室高/径=3.5,则 3.14×r2×7r×48=18000,r=2.57m,蓄热室直径5.14m,蓄热体高度18m。 燃烧器计算实例 假设高炉利用系数为K=3.5t铁/m3·昼夜,年工作日按355天计算。450m3高炉年产铁量估算为3.5×355×450=559125t。 焦比1:0.5,则冶炼强度i=1.75t焦/m3·昼夜。 高炉入炉风量V 0=Vu·i·v/1440(V 高炉入炉风量,Nm3/min;Vu高炉有效容积, m3;i冶炼强度,t焦/m3·昼夜;v每吨干焦的耗风量,Nm3/ t焦)V =450×1.75×2450/1440=1340 Nm3/min(实际1400)。 热风平均温度1150℃,送风期间热风带走的热焓为:363×1340=486420kcal/ min。(1250时,431.15-46.73=384.42热焓为538188 kcal/ min,供热717584 kcal/ min) 热风炉一个工作周期2.25h,送风期0.75h,燃烧期1.5h。 热风炉效率为75%时,燃烧器每分钟的供热量为1/2×648560(717584)kcal/min,假设高炉煤气的热值为800 kcal/Nm3,则燃烧器每分钟的燃气量为405(448.5) Nm3/ min,燃烧器能力24300(26910) Nm3/h。 根据郝素菊等人编著的《高炉炼铁设计原理》所提供数据,金属套筒式燃烧器烟气在燃烧室内的流速为3~3.5Nm/s,陶瓷燃烧器烟气在燃烧室内的流速为6~7Nm/s。 根据郝素菊等人编著的《高炉炼铁设计原理》所提供数据,陶瓷燃烧器空气、煤气喷口以25~300角相交。一般空气出口速度为30~40m/s,煤气出口速度15~20 m/s。 燃烧器能力27000 Nm3/h,空气量21600 Nm3/h,烟气量48600 Nm3/h。 燃烧混合室直径φ2530mm,烟气流速2.62m/h。 喉口直径Φ1780mm,烟气流速5.3m/h。 由于增加了旁通烟道,燃烧器能力提高10%,29700 Nm3/h,空气20790 Nm3/h,烟气 量50490 Nm3/h, 燃烧混合室直径φ2300mm,面积4.15m2,烟气流速3.38m/h. 喉口直径Φ1736mm,面积2.37m2, 烟气流速5.92m/h。

热风炉燃烧温度控制系统的设计

工号:JG-0054889 酒钢炼铁保障作业区 论文设计 题目热风炉燃烧温度控制系统设计 厂区炼铁厂 作业区保障作业区 班组维护班 姓名陈现伟 2011 年05 月08 日

论文设计任务书 职工姓名:陈现伟工种:维护电工 题目: 热风炉燃烧温度控制系统的设计 初始条件:炼铁高炉采用内燃式热风炉,燃烧所采用的燃料为高炉煤气和转炉 煤气。两种燃料混合后进入热风炉燃烧室,再与助燃空气一起燃烧,要求向高炉送风温度达到1350℃,则炉顶温度必须达到1400℃±10℃。 要求完成的主要任务: 1、了解内燃式热风炉工艺设备 2、绘制内燃式热风炉温度控制系统方案图 3、确定系统所需检测元件、执行元件、调节仪表技术参数 4、撰写系统调节原理及调节过程说明书 时间安排 4月29-30日选题、理解设计任务,工艺要求。 5月1-3日方案设计 5月4-7日参数计算撰写说明书 5月8日整理修改 主管领导签字:年月日

目录 摘要.............................................................. I 1内燃式热风炉工艺概述. (1) 2热风炉温度串级控制总体方案 (2) 2.1内燃式热风炉送风温度控制方案选择... (2) 2.2内燃式热风炉温度串级控制系统框图 (4) 3系统元器件选择 (4) 3.1温度变送器 (5) 3.2温度传感器 (5) 3.3控制器及调节阀 (6) 3.3.1调节阀的选择 (6) 3.3.2控制器即调节器的选择 (6) 4参数整定及调节过程说明 (7) 4.1参数整定 (7) 4.2调节过程说明 (8) 学习心得及体会 (10) 参考文献 (11)

热风炉的燃烧操作范本

操作规程编号:LX-FS-A51675 热风炉的燃烧操作范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

热风炉的燃烧操作范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、确认干燥系统所有设备均已运行正常,19#皮带上有料,确认“准备完毕”指示灯亮。 2、点火前,调整好干燥系统负压(以点火烧嘴或火把伸入不熄灭为宜)。 3、点火后,关闭待用烧嘴吹扫蒸汽阀,打开进油阀,观察燃烧状况。 4、燃烧稳定后,解除点火烧嘴,关闭LPG主阀,抽出火把。 5、沉尘室温度达70℃时,开始干燥,并引入SH、RH烟气。 6、视炉膛温度和热风炉出口烟气温度来调整三

次风总量及三次风量。 7、熄火时,先降低干燥料量,关闭重油调节阀前的进油阀,并打开吹扫蒸汽阀吹扫重油管道和烧嘴。 请在该处输入组织/单位名称 Please Enter The Name Of Organization / Organization Here

高效节能热风炉设计与计算

I ndustrial Furnace V ol . 26 No . 3 May 2004 文章编号:1001 - 6988 (2004) 0320041205 高效节能热风炉设计与计算 胡秀和 (黑龙江省庆钢股份有限公司设计院,绥化152400) 摘要:热风炉是为粮食烘干提供洁净空气的热源设备。为了解决烘干过程粮食污染问题,开发设计出RF L 系列燃煤热风炉。该炉具有机械化程度高,故障率低,操作方便,高效节能,无污染等优点。广泛应用于世行贷款的国储库改造等粮食干燥机招标项目中。 关键词: 燃煤热风炉; 参数选择; 设计原则; 工作原理; 应用效果 中图分类号: T S21013 文献标识码:B Design and C alculation of H igh E ff iciency & E nergy S aving H ot2Air Furnace H U X iu2he ( Design Instiute Qing’an Iron & Steel Co. , L t d. , S u ihua 152400 , China) Abstract : H ot- air furnace is the heat- s ource equipment for supplying clean- air to dry grain. RF L series coal- burning hot- air furnace is developed and designed ,in order to deal with the grain pollution. The furnace has the ad2 vantages of high mechanization ,low failure ,convenient operation ,and high efficiency & energy- saving , n o-pollution etc . It is widely used in the bidding projects such as of the W orld Bank loan ,reconstrction of national storage ware2 house etc . K ey w ords :coal- burning hot- a ir furnace ; selection of parameters ; design principles ; w orking principles ; ef2 fectiveness of application 0 前言 随着粮食干燥技术与规模的不断发展,对粮食干燥过程使用燃煤热风炉的技术性、科学性、适用性提出了更高要求。从提高炉膛燃烧温度,降低不完全燃烧损失入手,科学地确定炉体结构尺寸,提出了高效节能、低污染FR L 系列热风炉设计原则。该炉采用了机械链条炉排燃煤机,炉内采用新型节能拱燃烧技术,各拱采用掺304 不锈钢纤维的耐热混凝土浇注,耐高温,抗氧化,显著提高了炉体的使用寿 收稿日期:2004 - 04 - 15 作者简介:胡秀和(1966 —) ,男,工程师,从事燃煤热风炉和粮食烘干机的开发和设计工作. 命。换热器采用螺旋管和热浸铝新技术,既强化了传热过程又提高了换热器的耐高温性能,延长了使用寿命。RF L 系列热风炉的各项技术指标及性能居国内领先地位,可满足粮食干燥的需要。 1 热风炉燃烧理论计算 111 煤种及其成分 热风炉适应煤种较多,可燃烧无烟煤、烟煤、优质煤、劣质煤等。但是,热风炉的设计计算及实际选用一般都以工业锅炉设计代表性煤种( Ⅱ类烟煤) 为依据,其成分见表1 。 41

热风炉自动控制系统

热风炉自动控制系统 孟照崇控制工程2015 153085210040 摘要:本论文主要叙述中小型高炉炼铁自动化系统结构、功能及主要系统的自动控制的原理及 其实际应用。着重叙述了热风炉的参数控制过程(热风炉检测仪表及控制系统,热风炉换炉自动控 制系统,)和应用。 关键词:热风炉;自动控制;应用 Abstract :This thesis mainly narrates the middle and small scale blast furnace iron-smelting automated system structure, function and mainly control the principle of the system automatically and it is physically applied. Emphasized to describe a process (hot-blast stove detection instrumentation and control system, the hot-blast stove trades the stove automatic control system) that hot-blast stove parameter control and aplly. Keywords: Hot-blast stove; automatic control; application 1.前言 高炉热风炉是给高炉燃烧提供热风以助燃的设备,是一种储热型热交换器。国内大部分高炉均采用每座高炉带3至4台热风炉并联轮流送风方式,保证任何瞬时都有一座热风炉给高炉送风,而每座热风炉都按:燃烧-休止-送风-休止-燃烧的顺序循环生产。当一座或多座热风炉送风时,另外的热风炉处于燃烧或休止状态。送风中的热风炉温度降低后,处于休止状态的热风炉投入送风,原送风热风炉即停止送风并开始燃烧、蓄热直至温度达到要求后,转入休止状态等待下一次送风。 传统的完善的高炉热风炉燃烧自动化系统都是具有完善的基础自动化和使用数学 模型计算所需的加热煤气流量和助燃空气流量,并对基础自动化的热风炉燃烧自动控制系统进行有关的设定。在国外,已经使用人工智能的方式来代替数学模型,如日本川崎钢铁公司就开发了模糊控制系统取代数学模型。日本钢铁公司(新日铁)也使用专家系统来取代数学模型。 设计方案:高炉热风炉系统的基本组成:高炉本体、储矿槽、出铁场、除尘器、热风炉和辅助系统(煤气清洗、炉顶煤气余压发电(TRT)、水渣、水处理和制煤粉车间)等组成. 研究内容:1.设计高炉热风炉系统各种工艺设备(如:热风炉顺控和换炉操作等)启动、停止以及过程参数(如:包括高炉本体数百项温度、压力、流量数据,综合鼓风的风量、风温、富氧量与富氧压力、喷媒量与喷媒压力,上料过程、布料过程的模拟盘、热风炉转台的转换等)的检测、报警、联锁系统。2.设计、实现PID调节回路的连续控制和逻辑控制功能。3.对各种参数(如:热风炉余热量、冷风温度、送风温度、煤气流量和冷风流量)进行实时、历史趋势记录,生成班、日、月统计表。 研究目标:1.在上位机实现高炉热风炉系统的自动控制、手动控制及就地显示。2.系统采用分布I/O方式,设计实现高炉热风炉系统操作站与PLC高炉热风炉控制系统间的数据交换和通讯。

高炉热风炉设计说明书

} 目录 第一章热风炉热工计算 (2) 热风炉燃烧计算 (2) 热风炉热平衡计算 (4) 热风炉设计参数确定 (5) 第二章热风炉结构设计 (6) 设计原则 (6) 工程设计内容及技术特点 (6) ; 设计内容 (6) 技术特点 (6) 结构性能参数确定 (7) 蓄热室格子砖选择 (7) 热风炉管道系统及烟囱 (8) 顶燃式热风炉煤气主管包括: (8) 顶燃式热风炉空气主管包括: (9) 顶燃式热风炉烟气主管包括: (9) 《 顶燃式热风炉冷风主管道包括: (9) 顶燃式热风炉热风主管道包括: (10) 热风炉附属设备和设施 (10)

热风炉基础设计 (11) 热风炉炉壳 (11) 热风炉区框架及平台(包括吊车梁) (11) 第三章热风炉用耐火材料的选择 (12) 耐火材料的定义与性能 (12) < 热风炉耐火材料的选择 (12) 参考文献 (14) 第一章热风炉热工计算 热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表。 表煤气成分表 热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=,送风期Tf=,燃烧期Tr=,换炉时间ΔT=,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下:《 CO: , H2:, CH4:, C2H4:。则煤气低发热量: QDW=×+×+×+×= KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=。燃烧计算见表。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=21=1.23 m3。

热风炉自动控制系统

热风炉自动控制系统 摘要:本论文主要叙述中小型高炉炼铁自动化系统结构、功能及主要系统的自动控制的原理及其实际应用。着重叙述了热风炉的参数控制过程(热风炉检测仪表及控制系统,热风炉换炉自动控制系统,)和应用。 关键词:热风炉;自动控制;应用 Abstract :This thesis mainly narrates the middle and small scale blast furnace iron-smelting automated system structure, function and mainly control the principle of the system automatically and it is physically applied. Emphasized to describe a process trades 1. 而 另外 原 日、 研究目标:1.在上位机实现高炉热风炉系统的自动控制、手动控制及就地显示。2.系统采用分布I/O方式,设计实现高炉热风炉系统操作站与PLC高炉热风炉控制系统间的数据交换和通讯。 为提高生产安全性,要保证基本联锁要求。 高炉热风炉系统过程控制技术主要的作用有:1、节能降耗2、改善环境3、提高效率 因此,高炉热风炉自动控制系统的设计及应用、推广成为高炉热风炉技术发展的主要方向之一。

1.2高炉炼铁生产工艺流程 现代大型高炉车间生产工艺流程,包括主体和辅助系统,主体系统包括五部分;高炉本体、储矿槽、出铁场、除尘器、和热风炉。辅助系统则有煤气清洗、炉顶煤气余压发电(TRT)、水渣、水 处理和制煤粉车间等。其工艺流程如图1所示: 2热风炉控制系统 2.1高炉操作的计算机控制 2.1.1计算机控制系统的配置 高炉计算机控制的范围日益扩大,采用多台计算机使功能分散但又能集中操作,即所谓集中分散系统,是当前计算机配置的主流。主要配置形式有两种:

相关主题
文本预览
相关文档 最新文档