当前位置:文档之家› 构造三角形中位线的方法

构造三角形中位线的方法

构造三角形中位线的方法
构造三角形中位线的方法

构造三角形中位线的方法

构造三角形中位线的方法

方法1 连接两点构造三角形的中位线

1.已知:如图,△ABC是锐角三角形,分别以AB、AC为边向外作两个正△ABM和△CAN,D、E、F分别是MB,BC,CN的中点,连结DE、FE,求证:DE=EF

证明:连接、,

和是等边三角形,

,,,

即,

在与中

、、分别是、、的中点,

,,

.

(2)延长BD交CA的延长线于E,

∵AD为∠BAC的平分线,BD⊥AD,

∴BD=DE,AB=AE=12,

∴CE=AC+AE=18+12=30,

又∵M为△ABC的边BC的中点,

∴DM是△BCE的中位线,

∴MD=1/2CE=15.

3.如图 , 在 Rt△ABC 中 ,∠ACB=90°,D 为△ABC 外一点 , 使∠DAC=∠BAC,E 为 BD 的中点 ,∠ABC=60°,求∠ACE 的度数。

解:延长 AD 、 BC 交于F.

∵在△ABC 与△ACF 中,

∠DAC=∠BAC,AC=AC,∠ACB=∠ACF=90°,∴△ABC ≌△ACF(ASA) ,

∴BC=FC,∠F=∠ABC=60°,

∴∠CAF=30°,

∵E 为 BD 的

中点, ∴EC ∥ AF ,

∴∠ACE=∠

CAF=30°.

方法3倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC =90°,BA =BC ,△BEF 为等腰直角三角形,

∠BEF =90°,M 为AF 的中点,求证:CF ME 2

1 .

证明:如图,延长EF 到D ,使DE=EF ,连接AD 、BD ,

∵△BEF 为等腰直角三角形,∠BEF=90°,

∴∠BFE=45°,BE ⊥DF ,

∴BE 垂直平分DF ,

∴∠BDE=45°,

∴△BDF是等腰直角三角形,

∴BD=BF,∠DBF=90°,

∵∠CBF+∠ABF=∠ABC=90°,

∠ABD+∠ABF=∠DBF=90°,

∴∠CBF=∠ABD,

在△ABD和△CBF中,

AB=BC

∠CBF=∠ABD

BD=BF

∴△ABD≌△CBF(SAS),

∴AD=CF,

∵M为AF的中点,DE=EF,

∴ME是△ADF的中位线,

∴ME=1/2AD,

∴ME=1/2CF.

方法4已知一边中点,取另一边中点构造三角形的中位线

5.如图,在四边形ABCD中,M,N分别为AD,BC的中点,连BD,若AB=10,CD=8.求MN的取值范围.

解:作BD中点E,连接ME、NE。

∵M,N分别为AD,BCc的中点

∴ME=1/2AB=5 NE=1/2CD=4

∵ME-NE

∴1

6.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 的中点,延长

BP 交AC 于点N ,求证:AC AN 31 .

证明:作DM ∥BN 交AC

于M , ∵AB=AC ,AD ⊥BC ,

∴BD=DC ,又DM ∥BN ,

∴NM=MC ,

∵点P 是AD 的中点,DM ∥BN ,

∴AN=NM ,

∴AN=NM=MC ,即AN=1/3AC .

构造全等三角形种常用方法

名师堂 校区地址: 南充 市顺庆区吉隆街 咨询电话: 2244028优学小班——提分更快、针对更强、时效更高 构造全等三角形种常用方法 在证明两个三角形全等时,选择三角形全等的五种方法(“SSS ”,“SAS ”,“ASA ”,“AAS ”,“HL ”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边的夹角用“SAS ”或再找第三组对应边用“SSS ”;若找到一组角则需找另一组角(可能用“ASA ”或“AAS ”)或夹这个角的另一组对应边用“SAS ”;若是判定两个直角三角形全等则优先考虑“HL ”。上述可归纳为: () ()() ()S SSS S A SAS S S SAS A A AAS ASA ??? ????????? ?用用用用或 搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了.下面举例说明几种常见的构造方法,供同学们参考. 1.截长补短法 例1.如图(1)已知:正方形ABCD 中,∠BAC 的平分线交BC 于E , 求证:AB+BE=AC . 解法(一)(补短法或补全法)延长AB 至F 使AF=AC , 由已知△AEF ≌△AEC ,∴∠F=∠ACE=45o, ∴BF=BE ,∴AB+BE=AB+BF=AF=AC . 解法(二)(截长法或分割法)在AC 上截取AG=AB ,由已知 △ ABE ≌△AGE ,∴EG=BE, ∠AGE=∠ABE,∵∠ACE=45o, ∴CG=EG, ∴AB+BE=AG+CG=AC . 2.平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边的中线. 例2.△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ . 证明:如图(1),过O 作OD ∥BC 交AB 于D ,∴∠ADO=∠ABC =180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO ,又∵∠DAO=∠QAO ,OA=AO , ∴△ADO ≌△AQO ,∴OD=OQ ,AD=AQ ,又∵OD ∥BP , ∴∠PBO=∠DOB ,又∵∠PBO=∠DBO ,∴∠DBO=∠DOB , ∴BD=OD ,∴AB+BP=AD+DB+BP =AQ+OQ+BO=AQ+BQ . A B C P Q D O D

构造中位线巧解圆锥曲线题

构造中位线 巧解圆锥曲线题 徐志平 (浙江金华一中 321000) 在求一些与圆锥曲线有关的题目时,通常需要先构造出三角形或梯形的中位线,然后借助中位线的性质定理来求解,现举例加以分析说明。 1.求点的坐标 例1. 椭圆13 122 2=+y x 的一个焦点为1F ,点P 在椭圆上。如果线段1PF 的 中点M 在y 轴上,那么点M 的纵坐标是 ( ) A. 43± B. 2 2± C. 23± D. 43± M 的坐标,只需先求点P 的坐标即可。 连接PF 2,由于M 是PF 1的中点,O 是F 1F 2的中点, 所以MO 是21F PF ?的中位线,又轴x MO ⊥,则有 轴x PF PF MO ⊥22,//,3312=-=P x 2 3±=,43±=∴M y ,故选(D )。 例2.定长为3的线段AB 的两端点在抛物线y 2 =x 上移动,记线段AB 的中点 为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标。 分析:利用抛物线的定义,结合梯形的中位线性质 定理可以解决问题。 解:抛物线的焦点)0,41(F ,准线 方程:41 -=x ,上分别作点A 、B 、M 的射影A 1、B 1、M 1,则由MM 1 是梯形AA 1B 1B )(21 )(21111BF AF BB AA MM +=+= ,在ABF ?可以取等号) 通径∴>≥+AB AB BF AF (,2 211=≥AB MM ∴M 到y 轴的最短距离= 。 4 5 4123=-即45=M x 。 ∴显然这时弦AB 过焦点),(04 1F 。设A (x 1,y 1),B (x 2,y 2),则有12 1x y = ① 22 2x y = ②,①-②得M y x x y y x x y y y y 21))((2121212121=--?-=-+

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

【精品】2021年八年级数学解题技巧训练7构造中位线解题的五种常用方法含答案与试题解析

2021年八年级数学解题技巧训练7构造中位线解题的五种常用 方法含答案与试题解析 一、经典试题 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 二、技巧分类 技巧1 连接两点构造三角形的中位线 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN; (2)求∠MPN的度数. 技巧2 已知角平分线及垂直构造中位线 3.(2019秋?诸城市期末)如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为() A.3B.9 2C.5D. 15 2 4.(2018春?吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD ⊥AD于点D,E为BC中点.求DE的长.

技巧3 倍长法构造中位线 5.如图,△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°, M为AF的中点,求证:ME=1 2CF. 技巧4 已知两边中点,取第三边中点构造三角形的中位线 6.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点,求证:AE=√2MN. 7.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于 点N,求证:AN=1 3AC.

2021年构造中位线解题的五种常用方法 参考答案与试题解析 一.试题(共7小题) 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 【专题】证明题. 【解答】证明:延长AN、AM分别交BC于点F、G.如图所示:∵BN为∠ABC的角平分线, ∴∠CBN=∠ABN, ∵BN⊥AG, ∴∠ABN+∠BAN=90°,∠G+∠CBN=90°, ∴∠BAN=∠AGB, ∴AB=BG, ∴AN=GN, 同理AC=CF,AM=MF, ∴MN为△AFG的中位线,GF=BG+CF﹣BC, ∴MN=1 2(AB+AC﹣BC). 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN;

三角形中位线中的常见辅助线

三角形中位线中的常见 辅助线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证: 2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证: 2AB DE =.

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

构造全等三角形的方法

全等三角形的构造方法 全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。判断三角形全等公理有SAS、ASA、AAS、SSS和HL,如果能够直接证明三角形的全等的,直接根据相应的公理就可以证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。一些较难的一些证明问题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 构造方法有: 1.截长补短法。 2.平行线法(或平移法):若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线。 3.旋转法:对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。 4.倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。 5.翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形。下面举例说明几种常见的构造方法,供同学们参考. 1.截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法. “补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成 的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长 的一段,然后证明加长的那部分与另一较短的线段相等.

例1.如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC 交BC于D,求证:AB=AC+CD. 例2 已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF 交BC于点D.求证:DE=DF. (2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC 于点D,且D为EF的中点. 求证:BE=CF.

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

构造三角形中位线的方法

构造三角形中位线的方法

构造三角形中位线的方法 方法1 连接两点构造三角形的中位线 1.已知:如图,△ABC是锐角三角形,分别以AB、AC为边向外作两个正△ABM和△CAN,D、E、F分别是MB,BC,CN的中点,连结DE、FE,求证:DE=EF 证明:连接、, 和是等边三角形, ,,, , 即, 在与中 , , , 、、分别是、、的中点, ,, .

(2)延长BD交CA的延长线于E, ∵AD为∠BAC的平分线,BD⊥AD, ∴BD=DE,AB=AE=12, ∴CE=AC+AE=18+12=30, 又∵M为△ABC的边BC的中点, ∴DM是△BCE的中位线, ∴MD=1/2CE=15. 3.如图 , 在 Rt△ABC 中 ,∠ACB=90°,D 为△ABC 外一点 , 使∠DAC=∠BAC,E 为 BD 的中点 ,∠ABC=60°,求∠ACE 的度数。 解:延长 AD 、 BC 交于F. ∵在△ABC 与△ACF 中, ∠DAC=∠BAC,AC=AC,∠ACB=∠ACF=90°,∴△ABC ≌△ACF(ASA) , ∴BC=FC,∠F=∠ABC=60°, ∴∠CAF=30°,

∵E 为 BD 的 中点, ∴EC ∥ AF , ∴∠ACE=∠ CAF=30°. 方法3倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC =90°,BA =BC ,△BEF 为等腰直角三角形, ∠BEF =90°,M 为AF 的中点,求证:CF ME 2 1 . 证明:如图,延长EF 到D ,使DE=EF ,连接AD 、BD , ∵△BEF 为等腰直角三角形,∠BEF=90°, ∴∠BFE=45°,BE ⊥DF , ∴BE 垂直平分DF ,

用三角形中位线定理解题

用三角形中位线定理解题 三角形中位线定理是平面几何中十分重要的定理,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何命题,如: 1.证明线段的倍分关系 例1 如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F. 证明:取CF的中点H,连接DH,则DH为△CBF的中位线,EF为△ADH的中位线,故DH=1 2 BF, EF=1 2 DH. 2.证明两线平行 例2 如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为垂足.求证DE∥ BC. 证明延长AD、AE交BC与CB的延长线于M、N. 由∠1=∠2,BD⊥AM,可得AD=DM;同理可得AE=EN.故DE为△ANM的中位线. ∴DE∥MN,即DE∥BC 3.证线段相等 例3 如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD 的中点,直线MN分别交AB、AC于P、Q.求证AP=AQ

证明取BC中点F,连接MF与NF. ∵BM=ME,BF=FC. 同理可得NF∥BD,且 又BD=CE,∴MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3, ∴∠1=∠2,故AP=AQ. 4.证两角相等 例4 如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E分别为MN与BC的中点,AP∥DE交BC于P. 求证:∠BAP=∠CAP. 证明连接BN并取中点Q,连接DQ与EQ,则DQ∥BM,且DQ=1 2 BM,EQ∥CN,且EQ= 1 2 CN, 又BM=CN. ∴DQ=EQ,故∠1=∠2, 又∵∠1=∠BAP,∠2=∠CAP, ∴∠BAP=∠CAP. 5.证比例式 例5 如图5,AD为△ABC的中线,过点C的任一直线与AD、AB分别相交于E与F,求

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

典中点平行四边形专训5 构造中位线解题的五种常用方法

典中点平行四边形专训5 构造中位线解题的五种常用方法 ?名师点金? 三角形的中位线具有两方面的性质: 一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接 连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线。 典例剖析:如图,在△ABC 中,BD,CE 分别平分∠ABC,∠ACB,AM ⊥CE 于点M,AN ⊥BD 于点N. 求证:MN=21(AB+AC-BC) 解题秘方:图中不存在中点,但结论与三角形中位线定理很类似,因此应设法寻找中点,再构造三角形的中位线.要证明MN=2 1(AB+AC-BC),可找以MN 为中位线的三角形,故延长AM 交BC 于点F,延长AN 交BC 于点G,易证明2MN=FG,而FG=BC+FC-BC.又易证明BG=AB,FC=AC,故问题得解。 方法1:连接两点构造三角形的中位线 1.如图,点B 为AC 上一点,分别以AB,BC 为边在AC 同侧作等边△ABD 和等边△BCE,点P,M,N 分别为AC,AD,CE 的中点。 (1)求证PM=PN ; (2)求∠MPN 的度数。 方法2:已知角平分线及垂直构造中位线 2.如图,在△ABC 中,点M 为BC 的中点,AD 为△ABC 的外角平分线,且AD ⊥BD.若AB=12,AC=18,求DM 的长。

3.如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC,BD ⊥AD 于点D,点E 为BC 的中点,求DE 的长。 方法3:倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC=90°,BA=BC ,△BEF 为等腰直角三角形,∠BEF=90°,M 为AF 的中点, 求证ME=21CF 方法4:已知两边中点,取第三边中点构造三角形的中位线 5. 如图,在△ABC 中,∠C=90°,CA=CB,E,F 分别为CA,CB 上一点,CE=CF,M,N 分别为AF 、BE 的中点, 求证AE=2MN 方法5:已知一边中点推理得出另一边中点再取第三边中点构造三角形的中位线 6.如图,在△ABC 中,AB=AC,AD ⊥BC 于点D,点P 是AD 的中点,连接BP 并延长交AC 于点N ,求证AN=3 1AC

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

找中点构造三角形中位线解题(教师)

找中点构造三角形中位线解题 三角形的中位线定理,是一个非常有价值的定理。它是一个在三角形中遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。现介绍几种在不同条件下寻找中点的方法,供同学们学习时参考。 一、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 二、应用时注意的几个细节: ①定理的使用前提:三角形。 ②定理使用时,满足的具体条件:两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的,利用此定理可证明线段平行,从而可证明两角相等; 大小上:等于第三边的一半。利用此定理可证明两条线段之间的倍分关系; 三、应用举例 1、如果已知三角形两边中点,就直接连接构成三角形的中位线 例1、如图,在四边形ABCD 中,AB=CD ,E 、F 、G 分别是AD 、BC 、BD 的中点,H 是EF 的中点,试说明线段GH 与线段EF 的位置关系; 简析:在△ABC 中,E 、G 分别是AD 、BD 的中点,可连接EG ,则 有AB EG 2 1 =;在△BCD 中,G 、F 分别是BD 、BC 的中点,可 连接GF ,则有CD FG 2 1 =, 而AB=CD ,所以EG FG =,即△ EFG 是等腰三角形,又H 是底边EF 的中点,由等腰三角形的三线合一定理可知GH ⊥EF. 2、如果已知三角形一边中点,则可以取另一边的中点连接起来构成三角形的中位线 例2、如图1所示,在三角形ABC 中,∠B=2∠C ,AD 是三角形的高,点M 是边BC 的中点,求证:DM= 2 1 AB 。 分析:看到结论的表达形式,我们就想到,三角形的中位线 定理,有这样的特点,因此,我们就可以构造AB 上的中位线,再证明这条中位线与DM 是相等的。 H G F E D C B A

1初中数学《几何辅助线秘籍》中点模型的构造1倍长中线法;构造中位线法

学生姓名学生年级学校 上课时间辅导老师科目 教学重点中点模型的构造(倍长中线法;构造中位线法;构造斜边中线法) 教学目标系统有序掌握几何求证思路,掌握何时该用何种方法做辅助线 开场:1.行礼;2.晨读;3.检查作业;4.填写表格 新 课 导 入 知识点归纳 1.已知任意三角形(或者其他图形)一边上的中点,可以考虑:倍长中线法(构造全等三角形);2.已 知任意三角形两边的中点,可以考虑:连接两中点形成中位线; 3.已知直角三角形斜边中点,可以考虑:构造斜边中线; 4.已知等腰三角形底边中点,可以考虑:连接顶点和底边中点利用“三线合一”性质. 新 课 内 容 做辅助线思路一:倍长中线法 经典例题1:如图所示,在△ABC中,AB=20,AC=12,求BC边上的中线AD的取值范围. 【课堂训练】 1.如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论: ①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是 ( ) A.①②④ B.①③④ C.①②③ D.①②③④ 第1题图第2题图 2.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=1, BF=2,∠GEF=90°,则GF的长为() A. 2 B. 3 C. 4 D. 5 3.如图,在△ABC中,点D、E为边BC的三等分点,则下列说法正确的有( ) ①BD=DE=EC;②AB+AE>2AD;③AD+AC>2AE;④AB+AC>AD+AE。 A. 1个B. 2个 C. 3个 D. 4个

4.如图,在△ABC 中,A B>BC,E 为BC 边的中点,AD为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交C A的延长线于G,求证:BF=CG. 5.如图所示,已知在△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,连接BE 并延长交AC 于点F,AE =EF ,求证:AC =B F. 6.如图所示,在△ABC 中,分别以AB 、AC为直角边向外做等腰直角三角形△ABD 和△ACE,F 为BC 边上中点,FA 的延长线交DE 于点G ,求证:①DE=2AF ;②FG ⊥DE . F G E D B C A F D B C A E G F B C A D E

构造全等三角形的基本方法

构造全等三角形的基本方法 第一种:倍长中线法(利用中点、中线构造) 例题1、如图,△ABC中,AD是中线,AB=4,AC=6,AD的范围是.2】

第二种:利用角平分线 角平分线常见的辅助线作法: 例题2、已知在△ABC中,∠B=2∠C,∠A的平分线AD交BC边于点D.求证:AC=AB+BD. 3】 【例1】

例题3、BE是角平分线,AD垂直BE于D,求证:∠2=∠1+∠C 第三种:截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分与另一较短的线段相等. 例题5:如图(1)已知:正方形ABCD中,∠BAC的平分线交BC于E, 求证:AB+BE=AC. 例题6、AB//CD,BE,CE是角平分线,求证:BC=AB+CD

第四种:旋转 对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形 例3、如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=6,PB=2,PC=4,求∠BPC的度数. 例4、如图,正方形ABCD中,DE=3,BF=1,∠EAF=45°,则EF= .

例5、如图所示,两个边长都为2的正方形ABCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕O点旋转,那么它们重叠部分的面积为 第五种:平行线法 例7、如图,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。

(完整版)初中数学_巧添辅助线__解证几何题

巧添辅助线 解证几何题 [引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以 归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。 一、倍角问题 研究∠α=2∠β或∠β=1 2 ∠α问题通称为倍角问题。倍角问题分两种情形: 1、∠α与∠β在两个三角形中,常作∠α的平分线,得∠1=1 2 ∠α,然后证明∠1=∠β;或把 ∠β翻折,得∠2=2∠β,然后证明∠2=∠α(如图一) 2、 ∠α与∠β在同一个三角形中,这样的三角形常称为倍角三角形。倍角三角形问题常用构 造等腰三角形的方法添加辅助线(如图二) [例题解析] 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。 求证:∠DBC= 1 2 ∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用 三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90°-12 ∠BAC 。 ∵BD ⊥AC 于D ∴∠BDC=90 ° ∴∠DBC=90° -∠C=90° -(90° - 12∠BAC)= 1 2 ∠BAC 即∠DBC= 1 2 ∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ?∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把?∠ A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。 证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°

构造中位线巧解题

构造中位线巧解题 Ting Bao was revised on January 6, 20021

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

用构造法解题对学生思维能力的培养

用构造法解题对学生思维能力的培养 [摘要] 本文主要如何通过运用构造法解题,激发学生的发散思维训练,使学生在解题过程, 选择最佳的解题方法,从而使学生思维和解题能力得到培养。 [关键词] 构造创新 什么是构造法又怎样去构造?构造法是运用数学的基本思想经过认真的观察,深入的思考,构造出解题的数学模型从而使问题得以解决。构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,及基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法。在解题过程中,若按习惯定势思维去探求解题途径比较困难时,可以启发学生根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养学生创造意识和创新思维的手段之一,同时对提高学生的解题能力也有所帮助,下面我们通过举例来说明通过构造法解题训练学生发散思维,谋 求最佳的解题途径,达到思想的创新。 1 、构造函数 函数在我们整个中学数学是占有相当的内容,学生对于函数的性质也比较熟悉。选择烂熟于胸的内容来解决棘手问题,同时也达到了训练学生的思维,增强学生的思维的灵活性,开拓性和创造性。 例1、已知a,b,m∈R+,且a < b 求证:(高中代数第二册P91)分析:由知,若用代替m呢?可以得到是关于的分式,若我们令是一个函数,且∈R +联想到这时,我们可以构造函数而又可以化为而我们又知道在[0,∞] 内是增函数,从而便可求解。 证明:构造函数在[0,∞] 内是增函数, 即得。有些数学题似乎与函数毫不相干,但是根据题目的特点,巧妙地构造一个函数,利用函数的性质得到了简捷的证明。解题过程中不断挖掘学生的潜在意识而不让学生的思维使注意到某一点上,把自己的解题思路搁浅了。启发学生思维多变,从而达到培养学生发散思维。 例2、设是正数,证明对任意的自然数n,下面不等式成立。 ≤ 分析:要想证明≤ 只须证明 ≤0即证 ≥0也是 ≥0对一切实数x 都成立,我们发现是不是和熟悉的判别式相同吗?于是我们可以构造这样的 二次函数来解题是不是更有创造性。 解:令 只须判别式△≤0,△= ≤0即得 ≤

浅析构造法在解题中的应用

浅析构造法在解题中的应用 袁炳金 ( 四川省射洪中学 ,629200) 数学的人文价值不仅为数学是现代文明的一部分,而且体现为数学对现代文明的深远影响。所以,置身于平凡抽象的数学问题中,追求思维简易化,挖掘蕴涵其中的数学思想,整理归纳其中的数学方法,学会“点石成金”之术,建立完整的知识网络体系,发展真正的数学创新能力,这是数学学习的宗旨。构造法,它是根据问题中的条件或结论的特征,以问题中的数学关系为“框架”,以问题中的数学“元件”,构造出新的对象或数学模型,从而使问题转化并得到解决的方法。它往往表现出简洁、明了、精巧,新颖等特点。但如何应用构造法解题,这是一项创造性工作,现结合一些具体的题目,略陈管见。 一、构造对偶式 解决问题前,充分观察所给式子的结构特征,构造出与已知式子结构相同或对称,奇偶、正余函数对换的式子,然后把它与原式经过或加减或乘除进行研究,有时会得到意想不到的效果。 例1. (1)求??+?+?50cos 20sin 50cos 20sin 2 2 的值; (2)求证 1 21212......654321-<-??n n n (1)解:令A=??+?+?50cos 20sin 50cos 20sin 2 2 构造对偶式 B=??+?+?50sin 20cos 50sin 20cos 2 2 则:??+??+=+50sin 20cos 50cos 20sin 2B A ?+=70sin 2————————————————① ?-?+?-=-30sin 100cos 40cos B A 2 1)3070cos()3070cos(-?+?+?-?= 21 70sin - ?-=————————————————② 由(①+②)÷2得A=4 3 (2)证明:令n n A 21 2......654321-??= 构造对偶式 1 22......765432+??=n n B 显然:A

C专题-构造三角形中位线

G E H D A B C N M B A C D G F H N M D A B D A N 专题 构造三角形中位线 【方法归纳】中点问题的处理方法较多,构造三角形中位线是常用方法之一. 一、连接两点构造三角形中位线 1.如图,E 、F 、G 、H 分别为四边形ABCD 的四边中点,试判断四边形EFGH 的形状并予以证明. 【解析】:四边形EFGH 为平行四边形. 2.如图,平行四边形ABCD 中,E 、F 分别是AD 、BC 上的点,且AE =BF ,BE 交AF 于M ,CE 交DF 于N ,求证: 1 //2 MN AD . 【解析】:连EF ,证平行四边形ABEF 和平行四边形EFCD ,∴EM =BM ,EN =CN . 3.如图,点是P 四边形ABCD 的对角线的中点,E 、F 分别是AB 、CD 的中点,AD =BC ,∠CBD =450,∠ADB =1050,探究EF 与PF 之间的数量关系,并证明. 【解析】:连PE ,证PE =PF ,∠EPF =1200,∴EF 3. 4.如图,点B 为AC 上一点,分别以AB 、BC 为边在AC 同侧作等边三角形ABD 和等边三角形BCE ,点P 、M 、N 分别为AC 、AD 、CE 的中点. ⑴求证:PM =PN ;⑵求∠MPN 的度数. 【解析】:⑴连AE ,CD ,证PM // 12CD ,PN //1 2 AE ,证△ABE ≌△BDC ,AE =CD ,∴PM =PN . ⑵设PM 交AE 于F ,PN 交CD 于G ,AE 交CD 于H ,由⑴知∠BAE =∠BDC ,∠ADH =∠ABD =600,∠FHG =1200,易证四边形PFHG 为平行四边形,∴∠MPN =1200. 二、利用角平分线+垂直构造中位线 5.如图三角形ABC 中,点M 为BC 的中点,AD 为三角形ABC 的外角平分线,且AD ⊥BD ,若AB =12,AC =18,求MD 的长.

相关主题
文本预览
相关文档 最新文档