当前位置:文档之家› 最新大肠杆菌发酵经验总结

最新大肠杆菌发酵经验总结

最新大肠杆菌发酵经验总结
最新大肠杆菌发酵经验总结

大肠杆菌发酵经验总结

首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。

其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。

第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。

第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。

根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。

大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。

一、代谢副产物-乙酸

乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。

预防乙酸产生的措施:

1、通过控制比生长速率来减少乙酸的产生:

比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。

2、透析培养:

在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。

3、控制葡萄糖的浓度:

葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。

常用的控制方法主要有:

恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。

二、温度

大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细

菌代谢加快,其产生代谢副产物也会增加。这些副产物会对菌体的生长产生一定的抑制作用。菌体生长过快也会影响质粒的稳定性。降低培养温度,菌体对营养物质的摄取和生长速率都会下降。同时也减少了有毒代谢副产物的产生和代谢热的产生。有时降低温度更有利于目的蛋白的正确折叠及表达。在重组大肠杆菌的发酵中不同发酵阶段其最适温度也不同,为了能获得大量的目的蛋白,首先要保证菌体的量,因此在前期可优先考虑菌体的生长,到诱导阶段应将目的产物的表达放在首位。

三、培养方式

微生物的培养方式主要有分批、连续和补料分批3种。大肠杆菌发酵大多采用补料分批培养,这是在现代发酵工艺得到优化的一种方式,能有效的优化微生物培养过程中的化学环境。使微生物处于最佳的生长环境。这种方式一方面可以避免某些营养成分初始浓度过高出现底物抑制现象,另一方面能够防止限制性营养成分被耗尽而影响细胞的生长和产物的形成。补料分批培养已广泛应用于各种各样的初级、次级生物产品和蛋白等的发酵生产中。

生物技术研究者追求的两个主要目标,一是新型生物产品的开发,另一就是为传统的或新生生物产品,寻求更经济的生产方式。近十年来,利用遗传工程技术来生产一些重要的生物药物,是生物技术领域中迅速发展的一个重要方向。在这一研究领域里,如何创造更经济、更有效的方法,来提高生产过程的经济性和产品的市场竞争力,已经成为生物技术领域的科学家们所关注的焦点问题。

利用重组DNA技术生产重要的生物药物,在人类文明史上具有划时代的意义。由于生产成本和生产率的高低直接影响公司的生存,重组生物药物生产过程的优化已经成为一个重要问题。它包括以下六个方面∶(1)适宜宿主的选择;(2)重组蛋白积累位点(如可溶的胞内积累、胞内聚合积累、周质积累或胞外积累)的确定;(3)重组基因最大表达的分子策略;(4)细胞生长和生产环境的优化;

(5)发酵条件的优化;后处理过程的优化。只有这六个方面都以实现高生产率为目标,整个

生产过程的最优化才能实现。

(一)细胞生长环境的优化策略

要提高细胞密度和生产率,首先需要对微生物生长的物理和化学环境进行优化,包括生长培养基的组成,培养物理参数(pH、温度和搅拌)及产物诱导条件。优化这些参数的目的在于保证细胞生长处于最适的环境条件之下,避免营养物过量或不足、防止产物降解以及减少有毒产物的形成。1.培养基组成的优化

培养基中通常含有碳(能)源、氮源,以及微营养物如维生素和微量元素,这些营养物的浓度与比例,对实现生产重组微生物的高密度发酵是很重要的。例如,过量的Fe2+和CaCO3与相对低浓度的磷酸盐可促进黄曲霉生产L-苹果酸;链霉菌在60~80 mmol/L CO32-存在下,其丝氨酸蛋白酶生产能力可提高10倍之多;在重组微生物达到高细胞密度后,限制磷酸盐浓度可使抗生素和异源白介素β的产率显著提高。此外还发现,限制精氨酸的浓度虽然会抑制细胞的生长,但比起精氨酸充足时细胞生长优良的情况,其重组α-淀粉酶的产量可提高2倍。

培养基中复合氮源的种类对重组大肠杆菌的高密度发酵也非常重要。一般地,当流加培养基中含有酵母膏时,重组蛋白不稳定;而当流加培养基中含有蛋白胨时,大肠杆菌不能再利用其所产生的乙酸。将酵母膏和蛋白胨都加入流加培养基中,不但所生产的重组蛋白非常稳定,细胞还能再利用代谢合成的乙酸,这是一种非常有趣的代谢机制。

恒化技术可用于优化精氨酸营养缺陷型大肠杆菌X90的生长培养基。使该菌株以0.4 h-1的比生长速率在含精氨酸的基本培养基上生长,待培养达到稳定状态后,在恒化器内分别加入氨基酸、维生素和微量元素来考察这些物质对菌体生长和精氨酸合成的影响。结果表明,由于氨基酸生物合成途径的末端产物抑制作用,加入某些氨基酸后,细胞生长反而受到抑制。加入NH4Cl后细

胞量则出现了戏剧性的增长。而添加维生素对菌体生长基本上没有任何影响。通过计算生物量对每种基质的产率,最终可以确定高密度发酵培养基的组成,在此优化培养基上,大肠杆菌X90细胞密度可达到92 g/L,同时形成56 mg/L的胞外重组蛋白酶。

2.特殊营养物的添加

在某些情况下,向培养基中添加一些营养物质能提高生产率。这些营养物的作用有可能是作为产物的前体,也有可能是阻止产物的降解,例如,在培养重组大肠杆菌生产氯霉素乙酰转移酶(一种由许多芳香族氨基酸组成的蛋白)时添加苯丙氨酸,可将酶的比活力提高大约2倍;在培养重组枯草芽孢杆菌生产β-内酰胺酶的培养基中添加60 g/L的葡萄糖和100 mmol/L的磷酸钾能使重组蛋白的稳定性显著提高。其原因可能是由于宿主细胞产生的多种胞外蛋白酶的活性被抑制,从而防止了重组蛋白的降解。

在生长培养基中添加特殊物质有时还能以一种未知的机制提高生产率。例如,在摇瓶培养Micromonospora cbersina时添加碘化钠可使dynemicin A的产量提高35倍,但在小型反应器中却无法重复这一结果。

3.限制代谢副产物的积累

培养条件的控制对代谢副产物的形成影响甚大。在分批或流加培养中,某些营养物的浓度过高均会导致Crabtree效应的产生。在这种效应下,酿酒酵母会产生乙醇,大肠杆菌则会产生过量乙酸,一旦生成乙酸,细胞生长及重组蛋白的生产均会受到抑制。大肠杆菌形成乙酸的速度依赖于细胞的生长速度和培养基的组成。业已确证,如果在培养基中添加复合营养物(如大豆水解物),则会增加乙酸的积累量。针对如何减轻由于乙酸积累而产生的负面影响,众多研究者进行了大量工作,如利用循环发酵技术来限制乙酸在重组大肠杆菌高密度培养中的积累。近来也有研究表明,添加某些氨基酸能减轻乙酸的抑制作用。如在培养基中添加10 mg/L的甘氨酸能显著促进大肠杆菌合成重组α-淀粉酶和β-内酰胺酶,并能刺激酶从周质向培养基中释放,但此时仍有乙酸伴随生成。

(二)培养模式

由于许多营养物在高浓度下对细胞有抑制作用,而为了达到高细胞密度,又必须供给大量的营养物质,因此,浓缩营养物必须以与其消耗速率成比例的速度加入反应器中。为此产生了多种形式的补料策略,它可以简单到线性补料,也可以复杂到利用数学模型计算得出的策略来控制补料速率。具体来说,培养模式的选择主要依赖于以下三个因素∶(1)所培养细胞的具体代谢行为;(2)利用抑制性底物合成目的产物的潜力;(3)诱导条件以及测量细胞培养各项参数的能力。

1.大肠杆菌流加发酵策略

大肠杆菌是迄今为止遗传背景最清楚的菌株,广泛用于基因工程的研究中。大肠杆菌高密度培养时最关键的问题是如何尽量减少乙酸的产生,因为高浓度葡萄糖或高比生长速率带来的高浓度乙酸会严重抑制细胞生长和重组蛋白的生产。研究发现,即使葡萄糖浓度只有0.25~0.5 g/L,大肠杆菌仍会产生乙酸。因此,高细胞密度发酵所采用的流加策略必须按照一定的算法制定,以保持反应器中底物浓度处于较低的水平。营养物最好以它们的消耗速率加入反应器中,这样不仅可以防止底物积累到毒性水平,也不会使细胞处于饥饿状态。

近年来已经报道了多种控制大肠杆菌流加培养中流加速率的方法,其中大多数是将流加速率与一种物理参数间接耦合(如溶氧、pH或CO2释放速率)。有学者将溶氧控制在一个预定值上以保证较低的生长速率,结果乙酸产生很少,最终细胞干重达到110 g/L,并发现较低的比生长速率还有利于重组蛋白的高表达。在另一个控制低比生长速率的高细胞密度培养中,研究者采用先指数流加葡萄糖、铵盐和无机盐,后采用广义线性流加的培养策略,有效地防止了乙酸的积累,重组大肠杆菌的细胞密度达到66 g/L,通过温度诱导可在胞内形成19.2 g/L的活性重组蛋白。

如果将葡萄糖浓度控制在一个不致于产生毒性的足够低的水平上,也可以使细胞在不存在限制性基质的情况下迅速生长到高细胞密度。这种控制策略对仪器的要求较高。Kleman等采用在线葡

萄糖分析仪,以微生物对葡萄糖的需求来决定葡萄糖和其它营养物的流加速率,这一算法能够在产物诱导阶段中根据细胞生长的变化自动调整流加速率。培养携带质粒的大肠杆菌MV1190,其质粒中带有编码1,5-二磷酸核酮糖羧化酶的基因,最终细胞干重达到39 g/L,产生1.7 g/L可溶的活性蛋白。

2.重组酵母的流加发酵

酵母中广泛用于遗传工程研究的菌株是酿酒酵母。但采用酿酒酵母作为重组宿主也有以下缺点∶(1)重组蛋白生产的水平较低;(2)质粒不稳定;(3)生成乙醇。其中生成乙醇是研究者最不希望出现的,因为这会抑制重组蛋白的形成。近来研究表明,其它酵母,如巴斯德毕赤氏酵母也具有作为重组宿主的潜力。Clare等比较了重组巴斯德毕赤氏酵母和酿酒酵母在高细胞密度状态下表达和分泌鼠表皮生长因子的能力。培养每基因组含有19个拷贝数的巴斯德毕赤氏酵母,最终可获得447 mg/L胞内重组蛋白;而培养酿酒酵母所获得的最高水平仅6~7 mg/L。

通过先指数流加,后采用基于CO2释放和RQ值的线性流加控制方式可使重组巴斯德毕赤氏酵母的细胞干重达到80~90 g/L,并分泌高水平的重组人血清蛋白。而培养酿酒酵母,细胞干重和重组蛋白的产量仅分别为25 g/L和20 mg/L。即使将酿酒酵母的生长速率维持在0.12~0.18 h-1,也将形成10~13 g/L的乙醇,因而导致产率降低。但酿酒酵母产乙醇也并不是不可控制的。Shimizu等采用一个复杂的流加系统,将酵母的生长速率控制在0.3 h-1,可使谷胱甘肽(GSH)的生产最大而乙醇的生成最小。

3.流加培养的控制

一个好的流加控制系统必须避免两种倾向∶一是流加过量,补料组分在反应器中积累从而对细胞生长和产物形成产生抑制;二是流加不足,这可能会导致细胞必需营养物的缺乏。计算机技术的迅猛发展,为流加培养的控制提供了更有效的手段。近年来,应用计算机技术来监测和控制发酵过程的研究屡见报道。由于现代计算机技术的帮助,人们能够采用多种生长参数和数学模型来控制流加培养中营养物的添加,从而使复杂的控制系统得以实现。在各种人工智能技术中,模糊推理(fuzzy reasoning)是应用最广的一种。模糊逻辑控制(fuzzy logic control)部分依赖于数学生长模型,也采用“语言定义的规则系统”(linguistically defined rules system)来帮助系统响应发酵过程的非线性和动态行为。Alfafara等在流加培养酿酒酵母生产谷胱甘肽的研究中,采用一个模糊逻辑控制系统来控制葡萄糖的流加速度,对系统进行优化后谷胱甘肽的比产生速率达到6.2 h-1。目前,在流加培养中应用模糊逻辑控制技术的最大问题在于如何减少底物和产物浓度振荡所需的调整次数。自适应模糊逻辑控制算法的发展可望对此有所帮助。

(三)诱导策略

对于许多带有诱导型启动子的重组微生物,只有将生长期和产物形成期分开才能获得最大生产率。在流加培养中,这两段时期的分离可以通过延迟诱导直至细胞生长已达到高密度来实现。此外,如果质粒稳定并且产物对培养物无毒,那么可以用重复补料分批培养系统来提高生产率。有学者采用重复补料分批培养技术培养酿酒酵母,每24 h更换50%的培养基,持续30 d,其产物(hirudin)的产量可比连续培养系统提高3倍。

如果诱导物和产物对细胞都有毒性,那么应当人为地将诱导期和生长期分开。对于这种情况,两级连续培养是最适宜的培养方式。控制第一罐的条件,使细胞生长处于最适状态之下,而诱导与产物形成则发生在第二罐中。例如,在恒化器中培养一株能产β-内酰胺酶的重组大肠杆菌,将第一罐的发酵液导入第二罐中,构成一个两级培养系统。第二罐中添加营养物以及IPTG作为诱导物。结果获得300 mg活性β-内酰胺酶(相当于总蛋白的25%),其中90%分泌至胞外。这一系统至少可以稳定运行50 d。另一相似的系统被用于培养大肠杆菌生产重组蛋白A-EcoRI蛋白融合体。培养在恒浊器中进行,对第二罐进行热诱导,结果获得了比分批发酵高6倍的比生产率。研究者还尝试将生产重组蛋白的两级连续培养系统与亲和色谱柱相组合,试图实现重组蛋白生产和纯化的连续化。但由于技术上的一些原因,这种组合还未得到成功。

比生长速率对细胞生长和产物形成均有重要作用。经常会遇到的情况是,最适于细胞生长的比生长速率却并不适于产物的形成或其它特性的实现。我们在培养面包酵母时发现,比生长速率为0.2 h-1时细胞产率最高,而比生长速率为0.178 h-1时酵母发酵活力最佳。针对这一现象我们提出了一个两阶段控制比生长速率的流加培养策略,结果在一个反应器中实现了高发酵活力与高细胞产率的统一。(四)细胞循环发酵从反应器角度来考虑获得高细胞密度,通常采用的是细胞循环生物反应器。这种反应器利用一种切向流或中空纤维过滤器从醪液中分离细胞,细胞返回容器,无细胞醪液则以给定速率连续转移,同时代之以新鲜培养基。利用细胞循环技术,可使细胞保留在反应器中并达到高细胞密度,而毒性废产物和胞外产物则不断转移,这可以延迟或防止由细胞生长或产物形成引起的反馈抑制。细胞循环生物反应器能够适用于多种机体和生产系统,但它的应用也存在许多限制,主要包括∶(1)作用于进入过滤单元的细胞的剪应力太大;(2)系统的放大存在许多实际困难。

操作细胞循环生物反应器时必须考虑两个因素,一是稀释率(流速/体积);二是循环速率(指通过过滤系统的培养基速率)。稀释率的大小影响细胞的生长速率,不同的实验目的对稀释率的要求也不同;高的循环速率可使组分混合均匀,特别适用于细胞容易凝聚或成团的情况。但循环速率过高会使作用在细胞上的剪切力过高,也会导致过滤单元膜的迅速损坏。因此,很难同时确定合适的稀释率与循环速率,这也是限制细胞循环技术应用的一个重要因素。

细胞循环技术可望获得高的体积生产率,这对产物的提取非常有利。近年来循环发酵技术已广泛用于生产细胞代谢物,如燃料酒精和有机酸(如丁酸)及2,3-丁二醇。Lee和Chang采用细胞循环发酵技术,重组大肠杆菌细胞干重达到145 g/L,其重组青霉素酰化酶生产率比分批培养提高了近10倍。对于活细胞即为所希望的产物的培养,细胞循环发酵也能发挥作用。如在食品工业中,为生产牛奶,奶酪和酸乳酪需培养不同的乳杆菌,采用细胞循环生物反应器可以很容易地提高这些生物体的的密度。

在多种控制手段的帮助下,目前人们已经能很容易地获得超过100 g/L的细胞密度。但已有的研究结果表明,与最适生物量形成所对应的生长条件通常会导致较低的比生产率。例如,用细胞循环反应器生产2,3-丁二醇,生物量提高了大约6倍,但体积生产率只提高了2~3倍。同样,流加培养可以使链霉菌的细胞干重达到43 g/L,但蛋白酶活为零,而当细胞干重为18 g/L时蛋白酶活却高达3500 U/mL。我们在研究中也经常遇到类似问题。要解决这一问题,一方面应当研究如何促进重组蛋白的高效表达和提高重组菌株的稳定性,另一方面要研究与高细胞密度相关联的高水平产物的形成条件。

引言:高密度培养技术(High—cell—density cultivation,HCDC),也就是高密度发酵技术,提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)不仅可以减少培养体积、强化下游分离提取,还可以缩短生产周期、减少设备投资从而降低生产成本,能极大地提高产品在市场上的竞争力。这一目的的实现,除了重组菌本身的表达性质外,还必须赋予重组菌生长和产物表达的最适环境条件,包括适宜的培养基组成、合适的培养温度、pH、稳定的比生长速率、适宜的溶解氧以及营养物的合理流加等。重组大肠杆菌高密度发酵成功的关键技术是补料策略,也就是根据重组菌的生长特点及产物的表达方式采取合理的营养物流加方式。碳源和氮源是两种常用的限制性基质,葡萄糖因细菌利用快且价廉易得,已广泛用作重组菌高密度发酵的限制性基质。大肠杆菌在过量葡萄糖或缺氧的条件下会发生“葡萄糖效应”,积累大量有机酸而影响重组菌的生长和外源蛋白的有效表达。因此大肠杆菌高密度发酵中,合理流加碳源使葡萄糖效应降低,是成功的关键。

首先对重组Escherichia coli的高密度培养一文进行重点推荐https://www.doczj.com/doc/0917656320.html,/read.php?tid-2728-toread-1.html

该文从高密度培养过程中培养基成份及作用、高密度培养的过程控制参数、底物补料方式的种类

实验1 大肠杆菌的培养与分离

实验1:大肠杆菌的培养和分离 一、教学要求 二、基本内容 培养 无菌技配制培养基的原 的培养基的配制计算→称量→溶化→调pH 实配制培养基的方法→分装→加棉塞→灭菌→倒验平板 室平板划线法培分离、纯化大肠杆菌 养稀释涂布法系列稀释平板涂布 1.培养基的种类和化学成份 培养基的种类有很多划分标准,按物理性质分:固体培养基和液体培养基(加入琼脂多少)。液体培养基用于扩大培养和工业生产,固体培养基用于菌种分离,鉴定,计数(菌落数量)。 培养基的化学成分包括水、无机盐、碳源、氮源、生长因子等。按照微生物的同化作用类型是自养还是异养,碳源不同,自养微生物为无机碳源,如硝化细菌是二氧化碳或碳酸盐,异养微生物为有机碳源,如大肠杆菌是葡萄糖等有机物。 2.常见微生物类群 原核生物(如细菌大肠杆菌――二分裂、革兰氏阴性、异养兼性厌氧性肠道杆菌、蓝藻、支原体、衣原体、放线菌等)、原生生物(草履虫、变形虫等)、真菌(酵母菌――出芽生殖.异养兼性厌氧性微生物、霉菌、食用菌)、病毒等。 细菌是单细胞的原核生物,有细胞壁(肽聚糖)、细胞膜、细胞质,无成型的细胞核,只有一环状DNA分子(拟核)。以分裂(二分裂)的方式繁殖,分裂速度很快。用革兰氏染色法将细菌分为革兰氏阳性菌(革兰氏染液染色后,再脱色处理,细菌仍保留染色液的颜色)和革兰氏阴性菌两大类,区别在细胞壁的成分不同。大肠杆菌是革兰氏阴性(细胞壁薄,有荚膜)、兼性厌氧的肠道杆菌。 3.无菌技术 对实验操作空间、操作者的衣着和手进行清洁和消毒;将培养器皿、接种用具和培养基等器具进行灭菌;为避免周围微生物污染,实验操作应在酒精灯火焰附近旁进行;避免已灭菌处理的材料用具与周围物品相接触。 灭菌方法: 。灼烧灭菌法①接种环、接种针、试管口等使用

大肠杆菌高细胞密度发酵

课程设计说明书 课程名称:发酵工程 设计题目:大肠杆菌的高细胞密度发酵 院系:生物与食品工程学院 学生姓名:郑帅超 学号:201106040030 专业班级:11 生物技术 指导教师:李安华 2014年5月26日

课程设计任务书 设计题目枯草芽孢杆菌产淀粉酶发酵工艺的优化 学生姓名郑帅超所在院系生物与食品工 程学院 专业、年级、班11生物技术 设计要求: 1、树立正确的设计指导思想,严谨负责、实事求是、刻苦钻研、勇于探索的作风和学风。 2、根据所给资料,按照任务书中提出的范围和要求按时独立完成,不得延误,不得抄袭他人成果。 3、说明书应字迹清楚文字通顺,并附有各项设计成果表,摘引其他书籍或杂志的材料必须注明出处。 4、设计标准要求规范、实用、切合实际。 5、设计应严格按有关设计规范进行。 6、设计结束后,以个人为单位提交设计说明书一份(后附流程图)。 学生应完成的工作: 1、在老师的帮助下完成题目设计。 2、学生查阅相关文献、资料制定实验路线,并有指导老师检查实验路线的合理性和可行性。 3、学生在实验室完成实验方案。 4、完成课程设计说明书的初稿,由指导老师帮助修改,最后定稿。 参考文献阅读: [1]李寅等著,高细胞密度发酵技术,化学工业出版社,2006-10-01,177~288. [2]陈坚,李寅,毛英鹰,等. 生物工程学报,1998 ,14(4) :452~455. [3]李民,陈常庆,朴勤,等. 生物工程学报,1998 ,14(3) :270~275. [4]杨汝燕,李民,陈常庆. 工业微生物,1998 ,28(3) :30~33. [5 ]李民,陈常庆,朴勤等,生物工程学报,1998 ,14 (3) :270~275. [6]杨汝燕,李民,陈常庆,工业微生物,1999 ,29(1) :25~28. [7]徐皓,李民,阮长庚,等. 工业微生物,1998 ,28(2) :20~25. [8]刘社际,葛永红,杨立明. 中国生物制品学杂志,1999 ,12 (1) :29 ~31. 工作计划: 2013.5.11分组并确认指导老师,在老师指导下查阅文献,确定题目。 2013.5.12----2013.5.13 进行理论试讲阶段,确定实验路线,然后确定实验方案。 2013.5.14----2013.5.17 进行实验操作和书写设计说明书。 2013.5.18----2013.5.22 修改说明书,和指导老师沟通。 2013.5.23—2013.5.26 上交课程设计说明书,并由指导老师填写评语和成绩。 任务下达日期:2014年5月13日 任务完成日期:2014年5月26日 指导教师(签名):学生(签名):

最新大肠杆菌发酵经验总结

大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。 一、代谢副产物-乙酸 乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。 预防乙酸产生的措施: 1、通过控制比生长速率来减少乙酸的产生: 比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。 2、透析培养: 在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。 3、控制葡萄糖的浓度: 葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。 常用的控制方法主要有: 恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。 二、温度 大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细

发酵工厂设计教学大纲

《发酵工厂设计》课程教学大纲 课程编码:13032 课程名称:发酵工厂设计 课程英文名称:Process design in fermentation factory 先修课程:发酵设备、生化工程、发 酵工程、化工原理、物理 化学、材料力学、结构力 学、电子电工学等 适用专业:生物工程 总学时:40 讲课学时30 实验学时10实习学时0总学分:2.5 一、课程性质和任务: 该门课程为工科实践课,通过该课程的学习,使得学生了解工厂工艺设计过程,了解如何将所学知识集成在一起来完成一项工程设计工作。 二、教学目标及要求: 1、通过该课程使学生了解发酵工厂工程设计的流程和工艺设计的全过程; 2、料解工艺设计专业在工艺设计中的重要性及其与辅助工程设计之间的关系; 3、学习工艺计算中基本的计算方法:物料衡算及热量衡算; 4、学习设备、管道的选型及计算、设计; 5、学习工程图纸绘制方法和表达规范; 三、实验内容与学时分配: 绪论(1学时) 本章的重点和难点:工厂设计在国民经济中的地位和意义、生产工艺设计在总体设计中的重要性、工厂设计工作原则(1学时了解) 第一章基本建设程序(1学时) 本章的重点和难点:基本建设程序、项目建议书、可行性研究的任务、意义和深度第一节概述(1学时理解) 一、规定基本建设程序的必要性 二、基本建设程序内容 第二节项目建议书 一、项目建议书的任务和意义 二、项目建议书的主要内容 第三节可行性研究 一、可行性研究的任务和意义 三、可行性研究深度和审批程序 第四节设计任务书 一、设计任务书的内容 第五节初步设计阶段 二、初步设计阶段的内容

四、初步设计阶段的深度 第六节施工图设计阶段 一、施工图阶段的内容 三、施工图阶段的深度 第二章厂址选择(1学时) 本章的重点和难点:厂址选择的重要性和选择原则 第一节厂址选择的重要性和原则(1学时理解) 一、厂址选择的重要性 二、厂址选择的一般原则 第三章工厂总平面设计(1学时) 本章的重点和难点:总平面设计的内容、原则和步骤、工厂组成与厂区的划分 第一节总平面设计的内容、原则和步骤(1学时理解) 一、总平面设计的基本内容 二、总平面设计的原则和要求 三、总平面设计的步骤 第二节发酵工厂总平面布置的形式 一、工厂组成与厂区的划分 二、建、构筑物的布置位置 第四章工艺流程设计(2学时) 本章的重点和难点:工艺流程设计的重要性、生产方法的选择和工艺流程的设计原则第一节概述(2学时理解) 第二节生产方法的选择和工艺流程的设计原则 一、生产方法的选择 二、工艺流程的设计原则 第三节工艺流程的设计步骤 第五章工艺计算(10学时) 本章的重点和难点:物料衡算和能量衡算、蒸汽冷凝量与蒸发量的计算、抽真空量的计算 第一节物料平衡计算(3学时掌握) 一、物料衡算的意义、方法和步骤 三、计算实例 第二节热量平衡计算(3学时掌握) 一、热量衡算的意义、方法和步骤 二、计算实例 第三节水平衡计算(2学时掌握) 一、水衡算的意义、方法和步骤 二、计算实例 第四节耗冷量计算 一、耗冷量计算的意义、方法和步骤 二、计算实例 第五节无菌压缩空气消耗量计算(2学时掌握) 一、无菌压缩空气消耗量计算计算的意义、方法和步骤 二、计算实例 第六节抽真空量计算

(完整版)大肠杆菌培养基配制及培养方法

大肠杆菌培养 一、菌种冻存液的制备 含有足量细菌的液体培养基离心后在沉淀中加入等量40%甘油,-80o C冻存。 二、培养基制备 LB培养基配方(胰化蛋白胨(Trypton):10 g/L;酵母提取物(Yeast Extract):5 g/L;NaCl:10 g/L;pH 7.4) 液体培养基 胰化蛋白胨 10.0g 酵母粉 5.0g 氯化钠 10.0g 水 1000ml pH 7.4 固体培养基在液体培养基的基础上再加入1.5%-2.0%的琼脂 三、平板的制备 1)称取胰化蛋白胨10.0g,酵母粉5.0g,NaCl 10.0g,加入800mL二次水溶解,并用玻璃棒搅拌均匀,用1mol/L的NaOH调pH至7.4左右,定容至1L,调pH 7.4(若溶液pH大于7.4,用1mol/L HCl回调)。 2)分装在锥形瓶中,每瓶量不宜太多,没过瓶底一指左右。如需固体培养基在分装后的液体培养基内加入约2%的琼脂(150mL液体培养基加入2.5g琼脂)。3)在锥形瓶口依次覆盖带滤纸通气小孔的塑料膜和硬质纸,用皮筋捆好。所有锥形瓶如上述操作。用记号笔注明培养基名称、配制日期。 4)高压蒸汽灭菌锅121 oC灭菌15min。 5)灭菌后的培养基取出置电热鼓风干燥器内60oC烘干,待锥形瓶的封口纸干燥后取出。液体培养基可直接保存或使用,此时加有琼脂的培养基不会凝固,可在预先紫外杀菌30min以上的无菌操作台上,将培养基倒入培养皿内,每个培养皿培养基约10-15mL(直径90mm),在培养皿中厚度大约4mm左右。将平皿叠放在无菌操作台上,放置10min左右,待琼脂基本凝固可涂平板。6)若平板不直接使用,灭菌后将培养基在锥形瓶中保存,待需制备平板时,微波炉中火加热约3min,使琼脂熔化,室温冷却20min至不烫手可制备平板。 四、接种大肠杆菌 1)取实验室储备的大肠杆菌BL21冻存液,管口用酒精灯灼烧,打开离心管。2)接种方法一:用灭菌枪头蘸取冻存液在平板边缘上划横条,每三道为一组,旋转平皿一圈,最后中间划之字;接种方法二:用移液枪吸取100uL溶液于平板上,用酒精灯灭菌厚的涂抹棒划十字,涂布平板。 3)因实验一般都要求挑取单菌落,故涂平板适应考虑冻存液内细菌数量,若菌量过大应适当稀释。一般方法一获得单菌落的可能性比较大。涂平板应在酒

生物统计学 实验报告 大肠杆菌

A 题 细胞体内代谢物浓度预测 随着基因组、转录组、蛋白质组等各种“组学”研究计划的蓬勃开展,生命科学进入了“组学”时代。代谢组学作为系统生物学的重要分支,其研究的重点是细胞内代谢物种类与浓度的定性和定量分析以及代谢网络的构建和模拟。 对代谢物的检测及浓度测定主要采用实验方法,包括核磁共振、气相色谱-质谱联用和液相色谱-质谱联用等技术。但由于代谢物种类繁多,且大部分浓度较低(μM 数量级),尤其是胞内代谢物提取难度非常大,精确测定其浓度异常困难,而且实验测定需要消耗大量财力物力和人力,因此通过计算机方法对代谢物浓度预测和分析变得越来越重要。 活细胞的代谢物浓度由什么决定?除了一些特定的代谢和酶的作用以外,有没有那种能全局影响浓度值的性质? 试根据附件中的数据完成如下问题: 1 根据不同类型的数据,分析代谢物浓度与其物理化学性质之间的关系。 2 筛选合适的物理化学性质,建立预测代谢物浓度的预测模型,并对此模型进行评价; 1.线性插补法处理缺失数据 原理:用该列数据缺失值前一个数据和后一个数据建立线性插值,然后用缺失点在线性插值函数的函数值填充该缺失值,即: 在于消除不同变量的量纲的影响,而且标准化转化不会改变变量的相关系数。 代谢物浓度:取对数 代谢物理化性质:标准差标准化法 )1,1( m j n i S x x x j j ij ij ≤≤≤≤-=' 式中:.)(11,1121∑∑==--= =n i j ij j n i ij j x x n S x n x 3.SAS 软件建立多元线性回归方程 回归模型一般形式: u X b X b X b b Y k k +++++= (22110)

大肠杆菌在发酵乳中生长繁殖浅谈+-+LQ

大肠杆菌在发酵型酸牛奶生长繁殖浅谈 摘要:本文以发酵乳作为基础,其中添加一定浓度的以大肠杆菌为典型菌的大肠菌群,用以研究大肠杆菌在发酵乳中的生长情况。 关键词:大肠杆菌发酵型酸牛奶生长情况 一引言: 发酵型酸牛奶大致可以分为三个品类:第一类是满足营养需求的基础酸奶;第二类是满足美味休闲的大果粒、谷物酸奶;第三类是健康功能酸奶,如通畅、免疫、儿童成长等。其中基础酸奶的市场规模占60%以上,果粒(谷物)酸奶和功能性酸奶的市场规模相对较低。 因大肠杆菌对产品存在着污染隐患,现阶段没有相关文献说明大肠杆菌在发酵型酸牛奶中生长繁殖情况,为此,本文就大肠杆菌在发酵型酸牛奶生长情况进行了评述。 二术语和定义: 1.大肠菌群:在一定培养条件下能发酵乳糖、产酸产气的需氧和兼性厌氧革兰氏阴性无芽胞杆菌。 2.发酵乳fermented milk:以生牛(羊)乳或乳粉为原料,经杀菌、发酵后制成的pH 值降低的产品。 3.大肠杆菌:广泛存在于人和温血动物的肠道中,能够在4 4.5℃发酵乳糖产酸产气,IMViC(靛基质、甲基红、VP实验、柠檬酸盐)生化实验为++--或-+--的革兰氏阴性杆菌。以此作为粪便污染指标来评价食品的卫生状况,推断食品中肠道致病菌污染的可能性。 三设备及试剂: 1.温箱:36±1度 2.冰箱:2-5度 3.恒温水浴:46±1℃ 4.天平:感量0.01g 5.均质器 6.振荡器 7.无菌培养皿:直径为90mm 8.无菌吸管:1ml(具0.01ml刻度) 9.无菌锥形瓶:容量为500ml 10.移液器:20-200ul 培养基和试剂: 1.结晶紫中性红胆盐琼脂 2.煌绿乳糖胆盐肉汤 3.无菌生理盐水 4.无菌1mol/lNaOH和1mol/lHCL 四实验方法 1 收集发酵型酸牛奶,以大肠杆菌作为大肠菌群的典型菌落,其中添加10ml的复溶大肠杆菌(菌种编号为CCTCC AB91112)于样品中;

大肠杆菌微生物培养实验报告及评价标准

实验1 微生物的分离、培养及计数 实验原理 纯化分离:人为提供适宜的菌落生长的条件(包括营养、温度、Ph等)。用平板划线法,通过接种环在琼脂固体培养基表面连续划线的操作,将聚集的菌种逐步稀释分散到培养基的表面。在数次划线后培养,可以分离到由一个细胞繁殖而来的肉眼可见的子细胞菌落。 筛选:转基因大肠杆菌有抗氨苄青霉素基因,所以在含有氨苄青霉素的LB培养基中可以正常繁殖长成菌落。而普通的大肠杆菌没有抗氨苄青霉素基因,咋含有氨苄青霉素的LB培养基中不能繁殖。由此可进行大肠杆菌的筛选。 梯度稀释并计数:通过浓度梯度稀释把液体培养基培养的大肠杆菌稀释到一定浓度,用稀释涂布平板法,然后将不同稀释度的菌液分别涂布到琼脂固体培养基的表面进行培养。在稀释度足够高的菌液里,聚集在一起的微生物将被分散成单个细胞,从而能在培养基表面形成单个的菌落。由此可计数计算大肠杆菌的数量。 实验目的 1.通过制备LB固体培养基,对平板进行划线等,学会使用固体LB 平板。 2.通过用液体培养基,学会对微生物进行扩大培养。 3.通过稀释,学会用计数器对微生物进行计数。

实验材料和药品 待分离的大肠杆菌菌液、高压蒸汽灭菌锅、LB 固体培养基、LB 液体培养基、接种环、玻璃涂布器、培养皿、恒温培养箱、摇床、酒精灯、无菌水、移液枪、EP 管 实验步骤(用简单的流程图表示) 实验数据的记录与分析(如照片、表格等)

稀释倍数104105 大肠杆菌单个菌落个 837799111812数 平均数 浓度×107×107 实验结果与讨论 结果:稀释了105计算出来的结果约为×107ml/cm^3

年产10万吨啤酒工厂发酵车间设计_课程设计任务书

课程设计说明书题目:年产10万吨啤酒工厂发酵车间设计

专业课程设计任务书 设计题目:年产10万吨啤酒工厂发酵车间设计 学号:学生姓名:专业: 指导教师姓名:系主任: 一、主要内容及基本要求 主要内容: 1.拟在湘潭市西郊羊牯塘选择厂址新建年产10万吨啤酒工厂 2.设计范围:以发酵车间为主体设计,只做初步设计。 3.以生产工艺(流程)设计为主导,为其它配套专业(如全厂总平面、土建、采暖通风、水电、环保、行政管理、技术经济与概算等单项工程设计)提供设计依据和提出要求,兼顾非工艺设计。 基本要求: 生产方案和平面布局合理,工艺流程设计和设备选择及生产技术经济指标具有先进性与合理性,工艺计算正确,绘图规范,综合指标达到同类工厂先进水平,“三废”环保符合国家有关规定。 二、重点研究的问题 生产工艺流程的选择和设计;物料衡算;发酵主车间布置设计以及专业设备选型。三、进度安排(指导教师填写)

四、应收集的资料及主要参考文献(指导教师填写) [1]管敦仪主编,啤酒工业手册(上)[M]. 轻工业出版社,1985:69-346 [2]管敦仪主编,啤酒工业手册(中)[M]. 轻工业出版社,1985:33-108 [3]管敦仪主编,啤酒工业手册(下)[M]. 轻工业出版社,1985:12-207 [4]张学群、张柏青,啤酒工艺控制指标及检测手册[M]. 中国轻工业出版社,1993 [5]刘芳,啤酒工业废水治理技术研究[J]. 酿酒科技,1999,(9):47-51 [6]吴延东,啤酒工厂糖化设备的组合比较[J]. 酿酒科技,2002,(1):33-37 [7]李大勇,啤酒工厂糖化工艺选择[J]. 酿酒科技,2002,(3):22-30 [8]王坚,啤酒高浓度发酵工艺技术要点[J]. 山西食品科技,2000(5):58-63 [9]乔玉胜,啤酒麦汁一段冷却新技术[J]. 酿酒科技,2001, (2):20-24 [10]无锡轻工业学院,轻工业部上海轻工业设计院组编,食品工厂设计基础[M]. 中国轻工业出版社,1992:8-262 [11]中国食品发酵工业研究院,中国海诚工程科技股份有限公司,江南大学主编.食品工程全书(第三卷)食品工业工程[M]. 中国轻工业出版社,2005 [12]P.F.斯坦伯里,A.惠特克.发酵工艺学原理[M]. 中国医药科技出版社,1992 [13]王念春.啤酒厂自动化控制方案的设计与实现[J]. 测控自动化,2004.1 [14]郑岳传. 现代化啤酒厂设备的选择[J]. 食品与发酵工业,2001, 5:75-84

大肠杆菌发酵经验总结

大肠杆菌发酵经验总结-CAL-FENGHAI.-(YICAI)-Company One1

大肠杆菌发酵经验总结 大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,p H偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。 一、代谢副产物-乙酸 乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当

大肠杆菌实验

大肠杆菌感受态细胞制备与质粒DNA的转化 一、实验目的 1)掌握用CaCl2法制备感受态细胞的原理和方法。 2)学习和掌握质粒DNA的转化和筛选方法及操作步骤。 二、实验原理 本实验以E.coli DH 5α菌株为受体细胞,并用CaCl2处理,使其处于感受态,然后与pBS质粒共保温实现转化。由于所用pBS质粒带有长那霉素抗性基因。因此可以通过长那霉素抗性来筛选转化子。如果受体细胞没有转入pBS,则在含长那霉素的培养基上不能生长。能在长那霉素培养基上生长的受体细胞肯定已经导入了pBS。转化子扩增后,可将转化的质粒提取出,进行电泳酶切等进一步鉴定。 三、仪器及试剂 仪器:恒温摇床、CO2细胞培养箱、台式高速冷冻离心机、超净工作台、低温冰箱、恒温水浴锅、制冰机、分光光度计、移液枪、Eppendrof管。 试剂:LB培养基(在950mL水中加入10g胰蛋白胨、5g酵母提取物、10gNaCl、用1mol/L NaOH调制pH=7.2.加入至1L,121℃高压灭菌20min) 长那霉素储存液:100mg/mL 含长那霉素的LB固体培养基:(1L LB液体培养基中加入20g琼脂粉,将配好的LB固体培养基高压灭菌后,冷却至60℃左右,加入长那霉素储存液,使其终浓度为50μg/mL。摇匀后铺板,每皿倒15mL,室温放置过夜至冷凝水挥发干净) 1mol/L CaCl2储存液质粒DNA10ng/Μl 四、实验步骤 1 感受态细胞的制备 1)从LB平板上挑选新活化的E.coli DH 5α单菌株,接种于3~5mL LB液体培养基中,37℃下震荡过夜培养,12h左右,直至对数生长后期。

2)将该菌悬浮液以1:50的比例接种于5mL LB液体培养基中,37℃振荡培养2~3h至OD600为0.5左右。 3)将5mL培养液转入4个1.5mL离心管中,冰上放置10min,然后于4℃下,5000rpm离心5min。 4)弃去上清液,用预冷的1mL 0.1 mol/L CaCl2溶液轻轻悬浮细胞,冰上放置15~20min后,40℃下5000rpm离心5min。 2 铺平板 将配好灭菌的LB固体培养基加热融化,待冷却至60℃左右后,加入长那霉素储存液,使其终温度为50μg/mL,摇匀后铺板,每皿倒约15mL。室温放置过夜至冷凝水挥发干净。 3 感受态细胞的转化 1)取100μl感受态细胞悬浮液,加入5μLpBS质粒DNA溶液,轻轻摇匀,冰上放置30min。 2)42℃水浴热激70s,热激后迅速置于冰上冷却3~5min。 3)向管中加入400μl LB液体培养基(不含抗生素),混匀后37℃震荡培养1h。使细菌恢复到正常生长状态,并表达质粒编码的抗生素抗性基因。 4)将上述菌液摇匀,取200μl涂布于含长那霉素的筛选平板上,正面放置0.5h。待菌液完全被吸收后倒置培养皿,37℃培养16~24h, 5)对照实验: 对照组1:以同体积的无菌二次水代替DNA溶液,其他操作与上面相同。此组正常情况下在含抗生素的LB平板上应没有菌落出现。 对照组2:以同体积的无菌二次水代替DNA溶液,取5μl菌液,稀释100万倍,涂布于不含抗生素的LB平板上,此组正常情况下应产生大量菌落。 五、实验数据记录处理 转化后在含抗生素的平板上长出的菌落即为转化子,各培养皿中的菌落数如下表所示:

大肠杆菌发酵经验总结

大肠杆菌发酵经验总结 大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。 一、代副产物-乙酸 乙酸是大肠杆菌发酵过程中的代副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。 预防乙酸产生的措施:

发酵工厂设计概论

现代生物制药工厂设计理念 姓名:许忠福学号:201011805125 班级:生工101班 1、我国生物制药工厂发展概况 新中国成立后,制药工业取得了有目共睹的巨大成绩,1980年全国制药工厂共有800家,到1996年增至8000多家,2004年通过GMP达标的制约工厂有5000多家。尤其是生物制药异军突起,发展迅速。1953年青霉素在上海第三制药厂正式投产,1958年中国最大的抗生素生产厂华北制药厂建成,随后全国各地陆续建成一批抗生素生产厂,主要品种都能生产,不仅能满足国内需求,还能实现出口创汇。改革开放后,各地又建设了一批高新生物制药工厂,开发生产重组乙肝疫苗、痢疾疫苗、甲肝疫苗、狂犬疫苗、干扰素、重组人生长激素、促红细胞生成素、白细胞介素—2、各种诊断试剂等产品。 我国生物制药企业可分为如下三大类型: 1.1 中小型生化制药企业 在20世纪50--60年代逐步建成和发展起来,主要生产脏器制品和生化药物,如从猪胰脏中生产胰酶和胰岛索,从猪脑垂体中生产后叶针、缩宫素和加压素等。到20世纪80年代以后,随着生物分离工程技术的发展与应用,这类企业逐步壮大、整合、发展成为现代生化制药企业,如生产肝素钠和各种治疗酶的常州干红生化制药公司、生产胰岛素及其制剂的徐州万邦生化制药厂和生产玻璃酸钠及其制剂的山东正大福瑞达制药有限公司。 1.2 大型微生物制药企业 应用发醉工程和晦工程技术生产抗生素、有机酸、维生素和氨基酸类药物,如生产青霉素v甲、7—氨基—3—去乙酰氧基头孢烷酸(7—ADCA)和万古霉素等的华北抗生素制药厂,生产7—氨基头抱烷酸(7—ACA)、辛伐他汀和美伐他汀的浙江海正药业,生产大观霉素和头孢地嗪的山东鲁抗制药,以及中国维生素产业“四大家族”:东北制药总厂、江苏江山制药、维尔康药业和维生药业。氦基酸工业年生产能力已达20多万吨.其生产企业近百家,如湖北八峰氨基酸公司、浙江亚美生物化工股份有限公司、南昌化工(集团)有限责任公司和安徽科苑股份有限公司等。 1.3 现代生物工程制药企业 国内目前至少有3000多家单位从事生物工程研究,有200余家现代生物医药企业,50多家生物工程技术开发公司,已上市近30种生物技术药物,主要有基因工程药物、疫苗和单克隆抗体,并开始步人自主创新研发阶段。企业格局正向群落化、集约化转变,形成生物谷、生物城、生物岛等新模式。这类较大型的生产企业有长春生物制品研究所、成都科奥生物工程有限公司、上海生物制品研究所、沈阳三生制药股份有限公司、海南新大洲药业有限公司、长春长生基因药业股份有限公司、安微安科生物工程有限公司、深圳海王药业有限公司、珠海丽珠医药集团股份有限公司、北京四环生物制药有限公司等。 2、现代生物制药工厂设计理念 生物制药工厂工艺设计是指工艺工程师在一定工程目标的指导下,根据对拟建工程的要求,采用科学方法统筹规划,制定方案,对生物制药工厂进行扩建与技术改造时,从事的一种创造性工作。生物制药工厂工艺设计,不仅要具有一般制药工厂工艺设计知识.如生产工艺流程设

生物化学实验报告记录:Westernblotting检测大肠杆菌重组蛋白

生物化学实验报告记录:Westernblotting检测大肠杆菌重组蛋白

————————————————————————————————作者:————————————————————————————————日期:

实验三 Western blotting检测大肠杆菌重组蛋白 一、实验目的 利用Western Blotting技术,定性(或定量)检测苦荞黄酮醇合酶基因(Flavon ol synthase gene, FtFLS)在大肠杆菌表达宿主菌Escherichia coli BL(DE3)中的诱导表达。 二、实验原理 黄酮醇合酶(FLS,EC 1.14.11.23)属于2-ODD家族,催化黄酮醇合成支路中最后一步氧化反应,也是直接合成黄酮醇的反应。FLS可以使二氢黄酮醇在C3链中C2和C3之间氧化形成双键,从而生成黄酮醇:a Dihydroflavonol + 2-oxoglutarate + O2 a Flavonol + succinate + CO2 + H2O。 本实验采用PCR的方法,在苦荞黄酮醇合酶基因(FtFLS)ORF起始密码子前引入Kpn?酶切位点,去掉终止密码并引入Bam H ?酶切位点。克隆引入酶切位点后的FtFLS到表达载体pET-30b(+)质粒中,其表达产物分别在N-末端和C-末端各含有6 ×His标签。重组质粒(pET-30b(+)-FtFLS)经鉴定后转化表达宿主菌E. coli BL21(DE3)并使用IPTG进行诱导表达。收集诱导0 h、2 h、4 h、6 h和8 h的产物,经SDS-PAGE后用于考马斯亮蓝R-250染色或Western blotting分析。 Western blotting的标准流程如下:蛋白质首先通过SDS-PAGE胺凝胶电泳分离,通过电泳转移到固相支持物上(硝酸纤维素膜、PVDF膜和尼龙膜);将膜上未反应的位点封闭起来,以抑制抗体的非特异性吸附,固定的蛋白质即可与特异性的多克隆或单克隆抗体相互作用并通过放射、生色或化学发光的方法进行定位。 本实验采用小鼠抗聚组氨酸单克隆抗体(Anti-His tag IgG,一抗)与重组FtF LS蛋白的N-末端和C-末端6 ×His发生抗原-抗体特异反应,再利用辣根过氧化物酶标记羊抗小鼠IgG(peroxidase-Goat Anti- Mouse IgG,二抗)与一抗发生特异结合,最后使用DAB进行显色。DAB即:二氨基联苯胺(3, 3'-diaminobenzidine),是过氧化物酶(Peroxidase)的生色底物。DAB在过氧化氢的存在下失去电子而呈现出颜色变化和积累,形成浅棕色不溶性产物。该方法常用于检测过氧化物酶的活性,它灵敏度高,特异性好,在免疫组化,原位杂交,Western blotting等膜显色中

发酵工厂设计

发酵工厂中空气净化工艺的合理选择 无菌空气是通气发酵过程中的关键流体。它用于细菌的培养、发酵液的搅拌、液体的输送以及通气发酵罐的排气。在通气发酵过程中,空气系统的染菌一直被列为发酵生产的第一污染源。据报道,由于空气系统纰漏而导致发酵染菌,在总染菌数中比率高达19.96%,而我国的生产现状还远远高出这一数据。为了防止压缩空气染菌给发酵液造成污染,进入发酵罐的空气必须达到(0.5μm)100级净化标准,即每立方英尺空气中含有≥0.5μm的微粒数应≤100个。目前,空气净化的主要方法是通过介质过滤达到除菌目的。为了保证过滤后的空气达到净化标准,过滤前的空气要进行降温、除水、除油、减湿的预处理。据文献记载,只有当压缩空气的相对湿度φ≤60%,高效过滤器内的过滤介质保持干燥时,空气通过高效过滤方能达到过滤的期望值。因此,发酵空气净化实际上包括两部分:一是空气的预处理;二是选择性能优良的过滤介质和过滤设备。怎样使科学合理、经济实用的工艺与完善的工程设计有机地结合,使空气系统在优化条件下运行,是发酵行业工程设计者不懈努力的目标。 1 发酵工厂常用的空气预处理路线 1.1 标准路线(流程1) 该流程系80年代初由华东化工学院等单位提出。其工艺成熟,操作方便,适应各种气候条件,不受大气的绝对湿含量和相对湿度的影响。 随着科学技术的进步,传统理论和处理方法不断完善,特别是近年来空压机的技术有了突飞 猛进的发展。由于空压机选型不同,空气预处理的流程也不同。传统的活塞式机型容量小,规模生产时需要多台组合,且要用空气贮罐来消除排气产生的脉冲。目前发酵工厂多选用出气稳定、容量大的涡轮式或螺杆式机型,不必设置空气贮罐。改进后的流程增加丝网除沫器,加强了除雾滴能力。 1.2 混合型路线(流程2) 此流程适用于中等湿含量的地区,其特点是将部分来自空压机的热空气不经冷却,而直接 与大部分经降温除水的冷空气混合进入过滤器,可省去加热器;气体进过滤器的控制指标与 流程1相同;流程比较简单,冷却水用量相对节省。流程控制的关键是:空气的冷却温度和空气分配比的关系会随采风口所吸取空气的参数而变化。 该流程的特点是经降温除水的冷空气进换热器与来自空压机的热空气进行热交换,将冷空气温度提至30~35℃后去过滤器过滤,省去加热蒸汽;热空气经换热后降低了进冷却器的温度,节省了冷却水用量。其不足是空气的传热系数小,传热面积需要很大。 1.4 热空气路线(流程4)

大肠杆菌生化实验

细菌常用生理生化反应实验结果观察 一结果观察 1葡萄糖发酵实验 直接观察试管, 试管变黄者为葡萄糖发酵阳性菌,不变者为阴性菌. 左边为恶臭假单胞菌,有气泡并变为黄色;右边为大肠杆菌, 2V. P. 反应和甲基红试验: 将培养好的液体培养基分装于两个干净的小试管中,在一管中滴入2-3滴甲基红试剂, 溶液变红的为甲基红阳性菌,不变的为甲基红阴性菌. 在另一管中加入V. P. 试剂,在37℃保温15分钟, 变红者为阳性菌,不变者为阴性菌. VP,图为右边为大肠杆菌,溶液变红,为阳性菌。 3吲哚实验 在培养好的液体培养基中加入1厘米高的乙醚,振荡,静置分层,加入2-4滴吲哚试剂,在掖面交界出现红色者为吲哚反应阳性菌,不变者为阴性菌.

左边为大肠杆菌,出现红色阳性菌;右边为产气杆菌,颜色不变,阴 性菌。 4硝酸盐还原实验 在点滴板上滴入革里斯试剂A液和B液,如过溶液变红说明有亚硝酸盐,为硝酸盐还原阳性菌,如果不变色需要再倒出部分培养基在另外的小孔中再滴如耳苯胺试剂,如果变蓝,说明此菌为阴性菌;如果不变色,说明此菌为硝酸盐还原强阳性菌. 右下方恶臭假单胞菌,加入革里斯试剂A、B后不变色,再加入二苯 胺试剂后变蓝,为阴性菌;左上方大肠杆菌为红色。 5柠檬酸盐实验 直接观察斜面,斜面变兰色者为柠檬酸盐利用阳性菌,不变者为阴性菌.

左边产生蓝色,产气杆菌阳性;右边为大肠杆菌,阴性。 6明胶水解 向培养好的明胶培养基中加入酸性氯化汞或三氯乙酸溶液,并铺满平板,菌落周围出现透明圈的菌为明胶水解阳性菌,没有透明圈的菌为阴性菌. 左边为大肠杆菌,出现透明圈,阳性;右边为枯草杆菌,阴性菌。 7 淀粉水解实验 向培养好的淀粉培养基平板上加入碘液,并铺满平板,菌落周围出现透明圈的菌为淀粉水解阳性菌,没有透明圈的菌为阴性菌.

发酵工厂设计终极版

目录第一章前言 1.1设计目的 1.2设计意义 第二章选址 2.1厂址选择原则 2.2厂址选择具体条件 2.3选择厂址 第三章厂区规划 3.1全厂总平面设计 3.2车间内发酵设备的布置 3.3车间内蒸馏设备布置 第四章工艺计算 第五章设备选型 第六章环保工程 6.1 废物总类 6.2 废物利用 6.3废气处理 6.4废水和废渣处理

第七章技术经济分析7.1 项目概算 7.2总投资估算

正文 第一章前言 1.2设计意义: 随着经济的发展,究竟这种重要的工业原料被广泛用于化工、塑料、橡胶、农药、化妆品及军工等工业部门。且石油资源趋于缺乏、全球环境污染的日益加剧,各国纷纷开始开发新型能源。燃料乙醇是目前为止最理想的石油替代能源,它的生产方法以发酵为主。菌种的优劣对发酵效果的影响非常大,能够筛选出具有优良性状的菌株及对菌株进行改良,对于降低生产成本,乃至实现酒精的大规模工业化生产,解决能源危机都有着重大意义。 在我国石油年消费以13%的速度增长,2004年进口原油量超过1亿吨,是世界第二大的石油进口国。我国燃料乙醇起步虽然较晚,但发展迅速,以成为继巴西美国之后世界第三大燃料乙醇生产国。2001年4月,原国家计委发布了中国实施车用汽油添加燃料乙醇的相关办法,同时国家质量技术监督局颁布了“变性燃料乙醇”和“车用燃料乙醇汽油”2个国家标准。作为试点,国家耗资50余亿元建立4个以消化“陈化粮”为主要目标的燃料乙醇生产企业。2006年,我国燃料乙醇生产能力达到102万t,已实现年混配1020万t燃料乙醇汽油的能力。2002年车用汽油消耗量占汽油产量的87.9%,如果按10%比例添加生产燃料酒精换算,需要燃料酒精381万吨,而全年酒精总产量仅为20.7万吨,如果在不久将来,能用燃料酒精替代500万吨等量的汽油,就可以为我国节省外汇15亿美元。在目前中国人均石油开采储量仅为2.6吨的低水平条件下,开发新能源成为社会发展,推动经济增长的动力,燃料酒精作为国家战略部署的新型能源之一,在我国具有广阔的市场前景。 第二章选址

大肠杆菌培养基配制及培养方法

大肠杆菌培养基配制及培养方 法(总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

大肠杆菌培养 一、菌种冻存液的制备 含有足量细菌的液体培养基离心后在沉淀中加入等量40%甘油,-80o C冻存。 二、培养基制备 LB培养基配方(胰化蛋白胨(Trypton):10 g/L;酵母提取物(Yeast Extract):5 g/L;NaCl:10 g/L;pH 7.4) 液体培养基 胰化蛋白胨 10.0g 酵母粉 5.0g 氯化钠 10.0g 水 1000ml pH 7.4 固体培养基在液体培养基的基础上再加入1.5%-2.0%的琼脂 三、平板的制备 1)称取胰化蛋白胨10.0g,酵母粉5.0g,NaCl 10.0g,加入800mL二次水溶解,并用玻璃棒搅拌均匀,用1mol/L的NaOH调pH至7.4左右,定容至1L,调pH 7.4(若溶液pH大于7.4,用1mol/L HCl回调)。 2)分装在锥形瓶中,每瓶量不宜太多,没过瓶底一指左右。如需固体培养基在分装后的液体培养基内加入约2%的琼脂(150mL液体培养基加入2.5g琼脂)。 3)在锥形瓶口依次覆盖带滤纸通气小孔的塑料膜和硬质纸,用皮筋捆好。所有锥形瓶如上述操作。用记号笔注明培养基名称、配制日期。 4)高压蒸汽灭菌锅121 oC灭菌15min。 5)灭菌后的培养基取出置电热鼓风干燥器内60oC烘干,待锥形瓶的封口纸干燥后取出。液体培养基可直接保存或使用,此时加有琼脂的培养基不会凝固,可在预先紫外杀菌30min以上的无菌操作台上,将培养基倒入培养皿内,每个培养皿培养基约10-15mL(直径90mm),在培养皿中厚度大约4mm左右。将平皿叠放在无菌操作台上,放置10min左右,待琼脂基本凝固可涂平板。 6)若平板不直接使用,灭菌后将培养基在锥形瓶中保存,待需制备平板时,微波炉中火加热约3min,使琼脂熔化,室温冷却20min至不烫手可制备平板。 四、接种大肠杆菌 1)取实验室储备的大肠杆菌BL21冻存液,管口用酒精灯灼烧,打开离心管。 2)接种方法一:用灭菌枪头蘸取冻存液在平板边缘上划横条,每三道为一组,旋转平皿一圈,最后中间划之字;接种方法二:用移液枪吸取100uL溶液于平板上,用酒精灯灭菌厚的涂抹棒划十字,涂布平板。 3)因实验一般都要求挑取单菌落,故涂平板适应考虑冻存液内细菌数量,若菌量过大应适当稀释。一般方法一获得单菌落的可能性比较大。涂平板应在酒精灯附近进行,若冻存液涂完的平板应倒置,防止平皿盖上产生水蒸气。 五、大肠杆菌的培养

相关主题
文本预览
相关文档 最新文档