当前位置:文档之家› 矩阵的相似变换

矩阵的相似变换

§1-2 矩阵的相似变换,酉变换和正交变换

重点:正交矩阵,酉矩阵

第2节

矩阵的相似变换

酉矩阵和正交变

一、特殊的矩阵介绍

1、实矩阵:若

[]n

m A ?, 则

[]A 实矩阵

元素为实数!

[]

m

n T

R

A ?∈* 正交矩阵:若

[][][][][]

1-==A A I A A T T

(是一种实矩阵!)

则称[A]为正交矩阵!

[][]()[][](),,ji ij T

ji ij T

a a A A a a A A -=-===为实对称方阵

为反对称方阵

[]A []A 第2节

矩阵的相似变换

酉矩阵和正交变

正交矩阵与正交相似变换密切有关!

即正交矩阵用于正交相似变换!

2、复矩阵:特别注意这两种复矩阵:

Hermite 矩阵酉矩阵两种重要的复矩阵!若

[]n

m C

A ?∈则

A 复线性空间

元素为复数!

[]221

1c id A c id

?-??=??+??例如:—复数矩阵。

第2节

矩阵的相似变换

酉矩阵和正交变

[]A —为复数单位。

1

i =

-

* Hermite 矩阵

是对称复数矩阵!

注:这两种复矩阵的区别!

[][][]

A A A ==H

T

共轭转置!

[]

[]

A A H

-=则[]A 称为反对称Hermite 矩阵。

第2节

矩阵的相似变换

酉矩阵和正交变

则:[]A ——称为Hermite 矩阵。

221

1c id A c id ?+????=????-?

?,1,2

ji

ij a a i j ==

[][][][]

[]

1

-==A A I A A H

H

或则[A]称为酉矩阵!

例:

[]??

?

???-=-ααααcos sin sin cos id

id

e e A 是一酉矩阵。显然:酉矩阵是复矩阵,但复矩阵不一定是酉矩阵!实的酉矩阵是正交矩阵。酉矩阵用于酉变换!

第2节

矩阵的相似变换

酉矩阵和正交变

* 酉矩阵定义:

[]n

n C

A ?∈[]A ——n 阶复方阵

①单位矩阵是酉矩阵,也是正交矩阵;

②若[U]是酉矩阵,[P]是正交矩阵,[][][][][]

I I I I I H

T

==[][][][][][][][][][]

11

--=?==?=P P I P P U U I U U T T H

H

酉矩阵与正交矩阵的条件!

③若[U]是酉矩阵,[P]是正交矩阵,则[U]H 也是酉矩阵,[P]T 也是正交矩阵。证:[]()[]()[][][][]()[]()[][]

[]

I P P P P I U U U U

T

T

T

H

H

H

====--1

1

证毕。

第2节

矩阵的相似变换

酉矩阵和正交变

3、酉矩阵和正交矩阵的性质(变换方法中用到!)

④若[U]和[V]都是同阶酉矩阵(或正交矩阵)⑤n 阶酉矩阵[U](或正交矩阵[P])的n 个列构成了C n (或R n )上的一组规范正交向量组。

则乘积[][][]S V U =也是酉矩阵(或正交矩阵)

证:[][]()

[][]()[][][][]

[][][][][][]

I V V V I V V U U V V U V U H

H H

H

H

====即:

一系列酉矩阵乘积仍是酉矩阵!一系列正交矩阵乘积仍是正交矩阵!

后面用到!

{}{}{}{}n

j i p p u u ij

j T

i ij j H

i ,2,1,=?????==δδ酉矩阵和正交矩振

第2节矩阵的相似变换

即:

二、矩阵的相似变换:酉变换和正交变换1、相似变换

定义:设

[][])

(,n

n n

n R

C

B A ??∈或如果存在非奇异方阵()

[])

(0n

n n

n R

C

S S ??∈≠或使

成立

则称[][][][]S A S B 1

-=[][]A B 与相似,记[][]

A B ~[][]

[]

B A S ?→?的变换称为相似变换。

变换矩阵!

第2节

矩阵的相似变换

酉矩阵和正交变

两种重要的相似变换!后面用的多!

注:相似变换是一种很实用的矩阵变换!实用上,是构造一非奇异方阵[S],进行相似变换,使变换后[B]比[A]简单(例如:三角阵、三对角阵等),以便快速求出[A]的特征解。性质:

①反身性:

③传递性:若②对称性:若[][]

A A ~[][][][]A

B B A ~~,则[][][][]

C B B A ~~,则

[][]

C A ~第2节

矩阵的相似变换

酉矩阵和正交变

2.酉变换和正交变换——两种特殊的相似变换!

用酉矩阵作为相似变换矩阵!

用正交矩阵作为相似变换矩阵!

[][]n

n n

n R

P C

U ??∈∈,

酉矩阵正交矩阵

[][][][][][]

[][][][][][]

1

1

,:,:--====P P I P P P U U I U U U T T H

H

第2节

矩阵的相似变换

酉矩阵和正交变

[][][][]

[][][][]

P A P B U A U B T

H

==使得

——酉变换

——正交变换

则[B]与[A]酉相似(或正交相似)。

说明:正交相似变换和酉相似变换在矩阵的特征问题分析中有

着重要的作用。

在结构动力分析中,所涉及的矩阵一般都具有良好的性态,因此正交矩阵和正交相似变换用的较多。

酉矩阵和酉相似变换是分析矩阵特征解性态的重要工具。

第2节

矩阵的相似变换

酉矩阵和正交变

矩阵

[]

[])

(,

n

n n

n R

C

B A ??∈或

矩阵的可对角化及其应用

附件: 分类号O15 商洛学院学士学位论文 矩阵的可对角化及其应用 作者单位数学与计算科学系 指导老师刘晓民 作者姓名陈毕 专业﹑班级数学与应用数学专业07级1班 提交时间二0一一年五月

矩阵的可对角化及其应用 陈毕 (数学与计算科学系2007级1班) 指导老师刘晓民 摘要:矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义。本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用. 关键词:对角化;特征值;特征向量;相似;线性变换 Matrix diagonolization and its application Chen Bi (Class 1,Grade 2007,The Depart of Math and Calculation Science) Advisor:Lecturer Liu Xiao Min Abstract: Matrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L 1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλL )?(12,,,m βββL )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??;r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>?L L 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.

1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

矩阵相似性质与应用研究报告

矩阵相似的性质与应用的研究 1引言 矩阵相似的理论是数学分析的重要概念之一,同时也是教案中的难点之一,特别是矩阵相似与可对角化矩阵问题,在各个版本的数学类图书中,往往将这两个问题紧凑的联系在一起。矩阵相似的概念是为深入研究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。 由于矩阵相似的应用范围相当广泛。本文主要是从矩阵相似定义以及各种性质的理论基础上直接引入矩阵在微分方程、自动控制理论基础等领域应用的实例并由此进行研究,也使这部分内容能够相互融合起来,更有利于学习者的掌握和应用。 2矩阵相似的定义与基本性质 2.1矩阵相似的定义 令I二I为非奇异矩阵,考察矩阵 1^1的线性变换 令线性变换的特征值为,对应的特征向量为R,即 将式——1代入上式,即有 -------------- 1或 ---------- 1 令一或—:,则式------------------ 1 可以写作 比较― 和亠两式可知,矩阵A和一1具有相同的特征值,并且矩阵B的特征向量是矩阵的特征向量的线性变换,即二刃。由于 矩阵和—I的特征值相同,特征向量存在线性变换的关系,所以称这

两个矩阵“相似”。于是: 设、都是阶方阵,若有可逆方阵,使______ I ,则称是的相似矩阵。或者说矩阵与相似。对进行运算—称为对进行相似变换。可逆矩阵称为把变成的相似变换阵。 2.2矩阵相似的一些基本性质: 自反性:。 对称性:三则二。 传递性:3及丄可得:二11 如果阶矩阵,相似,则它们有相同的特征值。但逆命题不成立。 相似矩阵另外的一些特性: 1>相似矩阵有相同的秩。 2>相似矩阵的行列式相等。 3>相似矩阵或都可逆,或都不可逆。当它们可逆时,它们的逆也相似。 4>y 贝y 亠,亠、?亠I 、亠I <若,均可逆)、 」从而,有相同的特征值。 3相似对角矩阵的有关性质 3.1矩阵可相似对角化的引入与定义 设是复数域上的维线性空间,是的一个线性变换。又―I 与______ 是的两组基,从第一组基到第二组基的过渡矩阵是。则线性变换在这两组基下的矩阵与相似,即 我们自然会问:矩阵可否相似与一个对角形矩阵?换言之,是否可以适当的选取第二组基__________________ ,使得线性变换在这组基下的矩阵是个对角矩阵

矩阵的相似变换

§1-2 矩阵的相似变换,酉变换和正交变换 重点:正交矩阵,酉矩阵 第2节 矩阵的相似变换 酉矩阵和正交变 一、特殊的矩阵介绍

1、实矩阵:若 []n m A ?, 则 []A 实矩阵 元素为实数! [] m n T R A ?∈* 正交矩阵:若 [][][][][] 1-==A A I A A T T 或 (是一种实矩阵!) 则称[A]为正交矩阵! 若 [][]()[][](),,ji ij T ji ij T a a A A a a A A -=-===为实对称方阵 为反对称方阵 []A []A 第2节 矩阵的相似变换 酉矩阵和正交变 正交矩阵与正交相似变换密切有关! 即正交矩阵用于正交相似变换!

2、复矩阵:特别注意这两种复矩阵: Hermite 矩阵酉矩阵两种重要的复矩阵!若 []n m C A ?∈则 A 复线性空间 元素为复数! []221 1c id A c id ?-??=??+??例如:—复数矩阵。 第2节 矩阵的相似变换 酉矩阵和正交变 []A —为复数单位。 1 i = -

* Hermite 矩阵 是对称复数矩阵! 注:这两种复矩阵的区别! [][][] A A A ==H T 即 共轭转置! 若 [] [] A A H -=则[]A 称为反对称Hermite 矩阵。 第2节 矩阵的相似变换 酉矩阵和正交变 若 则:[]A ——称为Hermite 矩阵。 221 1c id A c id ?+????=????-? ?,1,2 ji ij a a i j ==

若 [][][][] [] 1 -==A A I A A H H 或则[A]称为酉矩阵! 例: []?? ? ???-=-ααααcos sin sin cos id id e e A 是一酉矩阵。显然:酉矩阵是复矩阵,但复矩阵不一定是酉矩阵!实的酉矩阵是正交矩阵。酉矩阵用于酉变换! 第2节 矩阵的相似变换 酉矩阵和正交变 * 酉矩阵定义: []n n C A ?∈[]A ——n 阶复方阵

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

相似矩阵的性质及应用

华北水利水电大学相似矩阵的性质及应用 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2013年11月6 日

摘要:若矩阵P可逆,则矩阵P-1AP与A称为相似。矩阵相似的概念是为深入研 究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。相似矩阵有很多应用。例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。本文将讨论相似矩阵的有关性质及其应用。 关键词:相似矩阵;对角化;Jordan标准型;特征向量;特征值 英文题目:The properties and application of similar matrix Abstract:There are a lot of applications about similar matrix. Matrix for further research is the concept of similarity matrix characteristics, and that part of the problem can be converted into similar problems with a diagonalization matrix to simplify the problem study, while others matrix cannot be similar to a diagonal matrix, so this kind of problem can only use a definition or if and when the standard to solve.For example, we can discuss the integrality of the method by using the properties of similar matrices to confirm unknown elements and characteristic subspaces of similar matrices belong to the same characteristic value are isomorphism. Also we may discuss the equivalent conditions for similar matrices and their characteristic polynomial and their corresponding results, especially, applications of digitalization matrices in advanced algebra theory and other subjects are probed into.In this paper I will give out some corresponding properties of similar matrices and show their appliance. Key words:similar matrices; diagonal matrix; Jordan’s normal form; characteristic value; characteristic vector

矩阵相似的性质:矩阵相似例题

1 矩阵的相似 1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】) 矩阵的相似及其应用1 矩阵的相似 定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质 (1)反身性A∽A;这是因为A?E?1AE. (2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。 (3)传递性如果A∽B,B∽C,那么A∽C。已知有X,Y使B?X?1AX, C?Y?1BY。令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。 3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);

Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A) =秩(PA)=秩(AQ) 证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩 ?1 (B)=秩(B?CAC)=秩(AC)=秩(A) (2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即 P?1AP?B?P?1f(A)P?f(B) 证明设f(x)?anx?an?1x nn n?1

a1x?a0 a1A?a0E a1B?a0E 于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1B n?1 kk 由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得 Bk?X?1AkX, ?1?1 anAn?an?1An?1?因此Xf?A?X?X ?a1A?a0E?X

可对角化矩阵的应用

可对角化矩阵的应用 矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类,特殊的矩阵,在理论上和应用上有着十分重要的意义。下面列举几个常见的可对角化矩阵的应用的例子。 1.求方阵的高次幂 例设V 是数域P 上的一个二维线性空间,12,εε是一组基,线性变换σ在12,εε下的矩阵A =2110?? ?-?? ,试计算k A 。 解:首先计算σ在V 的另一组基12,ηη下的矩阵,这里 ()()121211,,12-?? ηη=εε ? -?? , 且 σ 在 12 ,ηη下的矩阵为 1 112 1112 12 11111121012111 01 2 1 ----?????????? ?? ??== ? ??? ????? ?----- ????????? ?????显然 1 10 10 1k k ??? ? = ? ? ?? ?? ,再利用上面得到的关系1 1121111112101201---???????? = ? ??? ?---???????? 我们可以得到 1 21111111111211 101201121201111k k k k k k k ----+????????????????=== ? ??? ? ????? ? ------+???????????????? 2.利用特征值求行列式的值。 例:设n 阶实对称矩阵2A =A 满足,且A 的秩为r ,试求行列式2E A -的值。 解:设AX=λX ,X ≠0,是对应特征值λ的特征向量,因

为2A A =,则22X X λE =AE =A =λ,从而有()20X λ-λ=,因为X ≠0, 所以()1λλ-=0,即λ=1或0,又因为A 是实对称矩阵,所以A 相似于对角矩阵,A 的秩为r ,故存在可逆矩阵P ,使 1 00 0r E P AP -??= ??? =B ,其中 r E 是r 阶单位矩阵,从而 1102220 2r n r n r E E A PP PBP E B E -----=-=-= =2 3由特征值与特征向量反求矩阵。 若矩阵A 可对角化,即存在可逆矩阵P 使,其中B 为对角矩阵,则 例 设3阶实对称矩阵A 的特征值为,对应的特征向量为,求矩阵A 。 解:因为A 是实对称矩阵,所以A 可以对角化,即A 由三个线性无关的特征向量,设对应于231λ=λ=的特征向量为 () 123,,T P X X X =,它应与特征向量 1 P 正交,即 []1123,00P P X X X =++=,该齐次方程组的基础解系为 ()() 231,0,0,0,1,1T T P P ==-,它们即是对应于231λ=λ=的特征向量。 取 ()123010100,,101,010101001P P P P B -???? ? ? === ? ? ? ?-???? ,则 1P A P B -=, 于是1110 010******* 210101010 0011010011 1010022A PBP -? ? ?-?????? ? ??? ?===- ? ??? ? ??? ? ?--??????- ??? 4判断矩阵是否相似

高等代数与解析几何第七章(1-3习题)线性变换与相似矩阵答案

第七章线性变换与相似矩阵 习题 7.1 习题 7.1.1 判别下列变换是否线性变换? (1)设是线性空间中的一个固定向量, (Ⅰ),, 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (Ⅱ),; 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (2)在中, (Ⅰ), 解:不是的线性变换。因对于,有,,所以。 (Ⅱ); 解:是的线性变换。设,其中,,则有 ,

。 (3)在(Ⅰ)解:是中, , 的线性变换:设,则 , ,。 (Ⅱ)解:是 ,其中 的线性变换:设 是中的固定数; ,则 , ,。 (4)把复数域看作复数域上的线性空间, 共轭复数; 解:不是线性变换。因为取,时,有 ,即。,其中是的 , (5)在中,设与是其中的两个固定的矩阵,,。 解:是的线性变换。对,,有 , 。 习题7.1.2 在中,取直角坐标系,以表示空间绕轴由 轴向方向旋转900的变换,以表示空间绕轴由轴向方向

旋转 900的变换,以表示空间绕轴由轴向方向旋转900的变换。证明(表示恒等变换), , ; 并说明是否成立。 证明:在中任取一个向量,则根据,及的定义可 知:, ,, ; ; , , , ,即,故。 因为因为 , ,所以 , ,所以 。 。 因为, ,所以。 习题 7.1.3 在中,,,证明。证明:在中任取一多项式,有 。所以。 习题 7.1.4 设,是上的线性变换。若,证明 。 证明:用数学归纳法证明。当时,有

命题成立。假设等式对成立,即。下面证明等式对 也成立。因有 ,即等式对也成立,从而对任意自然数都成立。习题 7.1.5 证明(1)若是上的可逆线性变换,则的逆变换唯一; (2)若,是上的可逆线性变换,则也是可逆线性变换,且 。 证明:(进而(2)因1)设 ,都是 都是的逆变换,则有, 。即的逆变换唯一。 上的可逆线性变换,则有 。 ,同理有 由定义知是可逆线性变换,为逆变换,有唯一性得 。 习题7.1.6 设是上的线性变换,向量,且,,,都不是零向量,但。证明,,, 线性无关。 证明:设,依次用可得 ,得,而, 故即得 ;同理有: ;依次类推可得,即得 ,得, ,进而得。

第二章 矩阵变换和计算.

第二章 矩阵变换和计算 一、内容提要 本章以矩阵的各种分解变换为主要内容,介绍数值线性代数中的两个基本问题:线性方程组的求解和特征系统的计算,属于算法中的直接法。基本思想为将计算复杂的一般矩阵分解为较容易计算的三角形矩阵. 要求掌握Gauss (列主元)消去法、矩阵的(带列主元的)LU 分解、平方根法、追赶法、条件数与误差分析、QR 分解、Shur 分解、Jordan 分解和奇异值分解. (一) 矩阵的三角分解及其应用 1.矩阵的三角分解及其应用 考虑一个n 阶线性方程组b Ax =的求解,当系数矩阵具有如下三种特殊形状:对角矩阵D ,下三角矩阵L 和上三角矩阵U ,这时方程的求解将会变得简单. ??????? ? ?=n d d d D O 2 1, ??????? ??=nn n n l l l l l l L ΛO M M 21222111, ???? ?? ? ??=nn n n u u u u u u U M O ΛΛ 22212111. 对于b Dx =,可得解为i i i d b x /=,n i ,,2,1Λ=. 对于b Lx =,可得解为1111/l b x =,ii i k k ik i i l x l b x /)(1 1∑-=- =,n i ,,3,2Λ=. 对于b Ux =,可得解为nn n n l b x /=,ii n i k k ik i i l x l b x /)(1 ∑+=- =,1,,2,1Λ--=n n i . 虽然对角矩阵的计算最为简单,但是过于特殊,任意非奇异矩阵并不都能对角化,因此较为普适的方法是对矩阵进行三角分解. 1).Gauss 消去法 只通过一系列的初等行变换将增广矩阵)|(b A 化成上三角矩阵)|(c U ,然后通过回代求与b Ax =同解的上三角方程组c Ux =的解.其中第k 步消元过程中,在第1-k 步得到的矩阵) 1(-k A 的主对角元素) 1(-k kk a 称为主元.从) 1(-k A 的第j 行减去第k 行的倍数)1()1(--= k kk k jk jk a a l (n j k ≤<)称为行乘数(子). 2).矩阵A 的LU 分解 对于n 阶方阵A ,如果存在n 阶单位下三角矩阵L 和n 阶上三角矩阵U ,使得LU A =, 则称其为矩阵A 的LU 分解,也称为Doolittle 分解.Gauss 消去法对应的矩阵形式即为LU 分解, 其中L 为所有行乘子组成的单位下三角矩阵, U 为Gauss 消去法结束后得到的上三角矩

最新对角化矩阵的应用本科

对角化矩阵的应用本 科

XXX学校 毕业论文(设计) 对角化矩阵的应用 学生姓名 学院 专业 班级 学号 指导教师 2015年 4 月 25 日

毕业论文(设计)承诺书 本人郑重承诺: 1、本论文(设计)是在指导教师的指导下,查阅相关文献,进行分析研究,独立撰写而成的. 2、本论文(设计)中,所有实验、数据和有关材料均是真实的. 3、本论文(设计)中除引文和致谢的内容外,不包含其他人或机构已经撰写发表过的研究成果. 4、本论文(设计)如有剽窃他人研究成果的情况,一切后果自负. 学生(签名): 2015 年4月25日

对角化矩阵的应用 摘要 矩阵对角化问题是矩阵理论中一个关键性问题.本文借助矩阵可对角化条件,可对角化矩阵性质和矩阵对角化方法来研究可对角化矩阵一些应用,包括求方阵的高次幂,反求矩阵,判断矩阵是否相似,求特殊矩阵的特征值,在向量空间中证明矩阵相似于对角矩阵,运用线性变换把矩阵变为对角矩阵,求数列通项公式与极限,求行列式的值. 【关键词】对角化;特征值;特征向量;矩阵相似;线性变换

Application of diagonalization matrix Abstract Matrix diagonalization problem is the key issue in the matrix theory. In this paper, by using matrix diagonalization conditions, diagonalization matrix properties and matrix diagonalization method we study some applications of diagonalization matrix, including for high-order exponent of matrix, finding the inverse matrix, matrix to determine whether it is similar, the eigenvalue of special matrix, in the vector space that matrix similar to a diagonal matrix, using linear transformation matrix is a diagonal matrix, for the series of general term formula and limit, the determinant of value. [Key words] The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation

矩阵初等变换及应用

矩阵初等变换及应用 王法辉 摘要:矩阵初等变换是高等代数的重要组成部分。本文对初等变换进行了研究探讨,详细介绍了与矩阵初等变换有关的基础知识。在阐述矩阵初等变换方法及应用原理的基础上,首先重点讨论该方法在解决高等代数相关计算问题上的应用,如求多项式的最大公因式、求逆矩阵解矩阵方程、求解线性方程组、判定向量的线性相关性、化二次型为标准型、求空间的基等。尤其是利用矩阵初等变换法求空间的基(解空间、特征子空间、核、值域等)的问题的计算,以具体实例生动的展示出问题的内在关系,最后给出了该方法在解决实际问题中的应用。本文理论分析与实际相结合,凸现了矩阵初等变换法直接、便利、有效的威力与作用。 关键词:矩阵初等变换;最大公因式;线性相关性;二次型;空间的基 1 导言 在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。在数学的学习和应用中,矩阵理论是高等代数的重要组成部分,矩阵初等变换方法更是贯穿高等代数理论的始终。应用初等变换证明命题过程容易被接受,同时也是解决高等代数相关计算问题最直接、便利、有效的方法。此外,还有大量的各种各样的,表面上看完全没有联系的问题的解决,都可以通过相同的方法实现:矩阵的初等变换。 因此,对矩阵初等变换方法及应用进行探讨,无疑是十分必要和重要的。 目前,有许多文献涉及到对矩阵初等变换方法该的讨论,但比较零散。在研读文献的基础上,对矩阵初等变换的内涵进一步挖掘,使矩阵初等变换方法的威力作用得以充分展示是重要也是必要的。 2 矩阵及其初等变换

2.1 矩阵 由n m ?个数)j ,,,2,1(==m i a ij (i =1,2, ,j =1,2,n , )排成m 行n 列 的数表 ? ? ??? ???????=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m 行n 列的矩阵,简称n m ?矩阵。 2.2 矩阵的初等变换及初等矩阵 矩阵有行列之分,因此有如下定义 定义1 矩阵的初等行(列)变换是指如下三种变换 (1)交换矩阵某两行(列)的位置,记为j i r r ? )(j i c c ?; (2)把某一行(列)的k 倍加到另一行(列)上,记为j i kr r + )(j i kc c +; (3)用一个非零常数k 乘以某一行(列),记为i kr )(i kc ,k ≠0; 矩阵的初等行变换及初等列变换统称为矩阵的初等变换。 定义2 由单位矩阵E 经过一次初等变换得到的方阵称为初等矩阵。有以下3种形式 (1)互换矩阵E 的i 行和j 行的位置,得 ? ???? ? ??? ?? ? ????? ???????????????? ?=1101111011),( j i P ; (2)用数域P 种非零数c 乘E 的i 行,得

矩阵相似的性质

1 矩阵的相似 1.1 定义 1.2性质 1.3定理(证明) 1.4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵 相似矩阵与矩阵的对角化 相似矩阵在微分方程中的应用 【1 】) 矩阵的相似及其应用 1.1 矩阵的相似 定义 1.1:设,A B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得1B X AX -=,就说A 相似于B 记作A B ∽ 1.2 相似的性质 (1)反身性A A ∽:;这是因为1A E AE -=. (2)对称性:如果A B ∽,那么B A ∽;如果A B ∽,那么有X ,使1B X AX -=,令1Y X -=,就有11A XBX Y BY --==,所以B A ∽。 (3)传递性:如果A B ∽,B C ∽,那么A C ∽。已知有,X Y 使1B X AX -=, C 1Y BY -=。令Z XY =,就有111C Y X AXY Z AZ ---==,因此,A C ∽。 1.3 相似矩阵的性质 若,n n A B C ?∈,A B ∽,则: (1)()()r A r B =; 引理:A 是一个s n ?矩阵,如果P 是一个s s ?可逆矩阵,Q 是n n ?可逆矩阵, 那么秩(A )=秩(PA )=秩(AQ ) 证明:设,A B 相似,即存在数域P 上的可逆矩阵C ,使得1B C AC -=,由引理2可知,秩 (B )=秩(1 B C AC -=)=秩(AC )=秩(A ) (2)设A 相似于B ,()f x 是任意多项式,则()f A 相似于()f B ,即 11()()P AP B P f A P f B --=?= 证明:设1110()n n n n f x a x a x a x a --=+++ 于是,1 110()n n n n f A a A a A a A a E --=+++ 1 110()n n n n f B a B a B a B a E --=++ + 由于A 相似于B ,则k A 相似与k B ,(k 为任意正整数),即存在可逆矩阵X ,使得

矩阵的运算与运算规则复习课程

矩阵的运算与运算规 则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

相似矩阵的性质及应用毕业论文

相似矩阵的性质及应用毕业论文 一.相似矩阵的定义 定义:设A 、B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得B=1-X AX ,就说A 相似于B ,记做B A ~. 二.相似矩阵的重要性质 性质1 数域P 上的n 阶方阵的相似关系是一个等价关系. 证明:1〉(反身性) 由于单位矩阵E 是可逆矩阵,且A=1-E AE ,故任何方阵A 与A 相似. 2〉(对称性) 设A 与B 相似,即存在数域P 上的可逆方阵C ,使得B=1-C AC ,由此可得A=CB 1-C =11)(--C B 1-C ,显然可逆,所以B 与A 相似. 3〉(传递性)设A 与B 相似,B 与C 相似,即存在数域P 上的n 阶可逆方阵P 、Q ,使B=1-P AP ,C=1-Q BQ ,则 C=BQ=1-Q 1-P APQ=1)(-PQ A (PQ ),从而A 与C 相似. 〈证毕〉 性质2 相似矩阵有相同的行列式. 证明:设A 与B 相似,即存在数域P 上的可逆矩阵C ,使得B=1-C AC ,两边取行列式得:|B |=|1-C AC |=|1-C ||A ||C |=|A ||1-C C |=|A |. 从而相似矩阵有相同的行列式. 〈证毕〉 下面先介绍两个引理 引理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上m ×s 矩阵,于是 秩(AB )≤min[秩(A ),秩(B )] (1) 即乘积的秩不超过各因子的秩. 证明:为了证明(1),只需要证明秩(AB )≤秩(A ),同时,秩(AB )≤秩(B ).

现在来分别证明这两个不等式. 设A=??????? ??nm n n m m a a a a a a a a a 2 1 22221 11211,B=?? ? ? ? ? ? ??ms m m s s b b b b b b b b b 21222 21112 11 令1B ,2B ,…,m B 表示B 的行向量,1C ,2C ,…n C ,表示AB 行向量.由计算可知,i C 的第j 个分量和m im i i B a B a B a +++ 2211的第j 个分量都等于kj m k ik b a ∑=1 ,因 而i C =m im i i B a B a B a +++ 2111 (i=1,2,…n ). 即矩阵AB 的行向量组n C C C ,,,21 可经B 的行向量组线性表出.所以AB 的秩不能超过B 的秩,也即, 秩(AB )≤秩(B ). 同样,令m A A A ,,21 表示A 的列向量,s D D D ,,21表示AB 的列向量,由计算可知 i D =11A b i +22A b i +…+m mi A b (i=1,2,…,s ). 这个式子表明,矩阵AB 的列向量可以经矩阵A 的列向量组表出,前者的秩不可能超 过后者的秩,这就是说,秩(AB )≤秩(A ). <证毕> 引理2:A 是一个s ×n 矩阵,如果P 是个s ×s 可逆矩阵,Q 是n ×n 可逆矩阵,那么 秩(A )=秩(PA )=秩(AQ ). 证明:令 B=PA,由引理1知秩(B )≤秩(A ); 但是由 A=1-P B, 又由 秩(A )≤秩(B ), 所以

矩阵对角化及应用论文

矩阵对角化及应用 理学院 数学082 缪仁东 指导师:陈巧云 摘 要:本文是关于矩阵对角化问题的初步研究,对矩阵对角化充要条件的归纳,总结,通过对实对称矩阵,循环矩阵,特殊矩阵对角化方法的计算和研究,让读者对矩阵对角化问题中求特征值、特征向量,求可逆矩阵,使对角化,提供了简便,快捷的求解途征. 关键词:对角矩阵;矩阵对角化;实对称矩阵;特征值;特征向量. 矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多.但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结.因此,我就针对这方面进行系统的分类归纳和总结,对一些理论进行应用和举例,给出算法.特别给出了解题时方法的选择. 1.矩阵对角化概念及其判定 所有非主对角线元素全等于零的n 阶矩阵,称为对角矩阵或称为对角方阵. 定义1.1 矩阵A 是数域P 上的一个n 级方阵. 如果存在一个P 上的n 级可逆矩阵X ,使 1X AX - 为对角矩阵,则称矩阵A 可对角化. 矩阵能否对角化与矩阵的特征值特征向量密切相关. 定义 1.2 设A 是一个n 阶方阵,λ是一个数,如果方程组 AX X λ= (1) 存在非零解向量,则称λ为的A 一个特征值,相应的非零解向量X 称为属于特征值λ的特征向量. (1)式也可写成, ()0E A X λ-= (2) 这是n 个未知数n 个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 =0E A λ-, (3)

即 11 121212221 2 0n n n n nn a a a a a a a a a λλλ------=--- 上式是以λ为未知数的一元n 次方程,称为方阵A 的特征方程. 其左端A E λ-是λ的n 次多项式,记作()f λ,称为方阵 的特征多项式. 11 1212122 21 2 ()||n n A n n nn a a a a a a f E A a a a λλλλλ------=-= --- 111n n n n a a a λλλ--=++ ++ 显然,A 的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,n 阶矩阵A 有n 个特征值. 设n 阶矩阵()ij A a =的特征值为12,,n λλλ,由多项式的根与系数之间的关系,不难证明 (ⅰ)121122n nn a a a λλλ+++=++ +; (ⅱ)12 n A λλλ=. 若λ为A 的一个特征值,则λ一定是方程=0A E λ-的根, 因此又称特征根,若λ为方程 =0A E λ-的i n 重根,则λ称为A 的i n 重特征根.方程 ()0A E X λ-=的每一个非零解向量都 是相应于λ的特征向量,于是我们可以得到求矩阵A 的全部特征值和特征向量的方法如下: 第一步:计算A 的特征多项式E A λ-; 第二步:求出特征方程=0E A λ-的全部根,即为A 的全部特征值; 第三步:对于 的每一个特征值λ,求出齐次线性方程组: ()0E A X λ-= 的一个基础解系12,,,s ξξξ,则A 的属于特征值λ的全部特征向量是 1122s s k k k ξξξ+++(其中12,,,s k k k 是不全为零的任意实数) . 设P 是数域, Mn (P ) 是P 上n ×n 矩阵构成的线性空间, A ∈Mn (P ) , 1,2t ,,λλλ 为 A 的t 个互不相同的特征值,高等代数第二版(北京大学数学系几何与代数教研室编)第四版(张和瑞、郝炳新编)课程中,我们学过了矩阵可对角化的若干充要条件如: (1) A 可对角化当且仅当A 有n 个线性无关的特征向量; (2) A 可对角化当且仅当特征子空间维数之和为n ;

相关主题
文本预览
相关文档 最新文档