当前位置:文档之家› 矩阵的相似变换(第一章)

矩阵的相似变换(第一章)

矩阵的相似变换(第一章)
矩阵的相似变换(第一章)

矩阵的可对角化及其应用

附件: 分类号O15 商洛学院学士学位论文 矩阵的可对角化及其应用 作者单位数学与计算科学系 指导老师刘晓民 作者姓名陈毕 专业﹑班级数学与应用数学专业07级1班 提交时间二0一一年五月

矩阵的可对角化及其应用 陈毕 (数学与计算科学系2007级1班) 指导老师刘晓民 摘要:矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义。本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用. 关键词:对角化;特征值;特征向量;相似;线性变换 Matrix diagonolization and its application Chen Bi (Class 1,Grade 2007,The Depart of Math and Calculation Science) Advisor:Lecturer Liu Xiao Min Abstract: Matrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L 1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλL )?(12,,,m βββL )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??;r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>?L L 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

矩阵相似性质与应用研究报告

矩阵相似的性质与应用的研究 1引言 矩阵相似的理论是数学分析的重要概念之一,同时也是教案中的难点之一,特别是矩阵相似与可对角化矩阵问题,在各个版本的数学类图书中,往往将这两个问题紧凑的联系在一起。矩阵相似的概念是为深入研究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。 由于矩阵相似的应用范围相当广泛。本文主要是从矩阵相似定义以及各种性质的理论基础上直接引入矩阵在微分方程、自动控制理论基础等领域应用的实例并由此进行研究,也使这部分内容能够相互融合起来,更有利于学习者的掌握和应用。 2矩阵相似的定义与基本性质 2.1矩阵相似的定义 令I二I为非奇异矩阵,考察矩阵 1^1的线性变换 令线性变换的特征值为,对应的特征向量为R,即 将式——1代入上式,即有 -------------- 1或 ---------- 1 令一或—:,则式------------------ 1 可以写作 比较― 和亠两式可知,矩阵A和一1具有相同的特征值,并且矩阵B的特征向量是矩阵的特征向量的线性变换,即二刃。由于 矩阵和—I的特征值相同,特征向量存在线性变换的关系,所以称这

两个矩阵“相似”。于是: 设、都是阶方阵,若有可逆方阵,使______ I ,则称是的相似矩阵。或者说矩阵与相似。对进行运算—称为对进行相似变换。可逆矩阵称为把变成的相似变换阵。 2.2矩阵相似的一些基本性质: 自反性:。 对称性:三则二。 传递性:3及丄可得:二11 如果阶矩阵,相似,则它们有相同的特征值。但逆命题不成立。 相似矩阵另外的一些特性: 1>相似矩阵有相同的秩。 2>相似矩阵的行列式相等。 3>相似矩阵或都可逆,或都不可逆。当它们可逆时,它们的逆也相似。 4>y 贝y 亠,亠、?亠I 、亠I <若,均可逆)、 」从而,有相同的特征值。 3相似对角矩阵的有关性质 3.1矩阵可相似对角化的引入与定义 设是复数域上的维线性空间,是的一个线性变换。又―I 与______ 是的两组基,从第一组基到第二组基的过渡矩阵是。则线性变换在这两组基下的矩阵与相似,即 我们自然会问:矩阵可否相似与一个对角形矩阵?换言之,是否可以适当的选取第二组基__________________ ,使得线性变换在这组基下的矩阵是个对角矩阵

矩阵的相似变换

§1-2 矩阵的相似变换,酉变换和正交变换 重点:正交矩阵,酉矩阵 第2节 矩阵的相似变换 酉矩阵和正交变 一、特殊的矩阵介绍

1、实矩阵:若 []n m A ?, 则 []A 实矩阵 元素为实数! [] m n T R A ?∈* 正交矩阵:若 [][][][][] 1-==A A I A A T T 或 (是一种实矩阵!) 则称[A]为正交矩阵! 若 [][]()[][](),,ji ij T ji ij T a a A A a a A A -=-===为实对称方阵 为反对称方阵 []A []A 第2节 矩阵的相似变换 酉矩阵和正交变 正交矩阵与正交相似变换密切有关! 即正交矩阵用于正交相似变换!

2、复矩阵:特别注意这两种复矩阵: Hermite 矩阵酉矩阵两种重要的复矩阵!若 []n m C A ?∈则 A 复线性空间 元素为复数! []221 1c id A c id ?-??=??+??例如:—复数矩阵。 第2节 矩阵的相似变换 酉矩阵和正交变 []A —为复数单位。 1 i = -

* Hermite 矩阵 是对称复数矩阵! 注:这两种复矩阵的区别! [][][] A A A ==H T 即 共轭转置! 若 [] [] A A H -=则[]A 称为反对称Hermite 矩阵。 第2节 矩阵的相似变换 酉矩阵和正交变 若 则:[]A ——称为Hermite 矩阵。 221 1c id A c id ?+????=????-? ?,1,2 ji ij a a i j ==

若 [][][][] [] 1 -==A A I A A H H 或则[A]称为酉矩阵! 例: []?? ? ???-=-ααααcos sin sin cos id id e e A 是一酉矩阵。显然:酉矩阵是复矩阵,但复矩阵不一定是酉矩阵!实的酉矩阵是正交矩阵。酉矩阵用于酉变换! 第2节 矩阵的相似变换 酉矩阵和正交变 * 酉矩阵定义: []n n C A ?∈[]A ——n 阶复方阵

相似矩阵的性质及应用

华北水利水电大学相似矩阵的性质及应用 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2013年11月6 日

摘要:若矩阵P可逆,则矩阵P-1AP与A称为相似。矩阵相似的概念是为深入研 究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。相似矩阵有很多应用。例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。本文将讨论相似矩阵的有关性质及其应用。 关键词:相似矩阵;对角化;Jordan标准型;特征向量;特征值 英文题目:The properties and application of similar matrix Abstract:There are a lot of applications about similar matrix. Matrix for further research is the concept of similarity matrix characteristics, and that part of the problem can be converted into similar problems with a diagonalization matrix to simplify the problem study, while others matrix cannot be similar to a diagonal matrix, so this kind of problem can only use a definition or if and when the standard to solve.For example, we can discuss the integrality of the method by using the properties of similar matrices to confirm unknown elements and characteristic subspaces of similar matrices belong to the same characteristic value are isomorphism. Also we may discuss the equivalent conditions for similar matrices and their characteristic polynomial and their corresponding results, especially, applications of digitalization matrices in advanced algebra theory and other subjects are probed into.In this paper I will give out some corresponding properties of similar matrices and show their appliance. Key words:similar matrices; diagonal matrix; Jordan’s normal form; characteristic value; characteristic vector

矩阵相似的性质:矩阵相似例题

1 矩阵的相似 1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】) 矩阵的相似及其应用1 矩阵的相似 定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质 (1)反身性A∽A;这是因为A?E?1AE. (2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。 (3)传递性如果A∽B,B∽C,那么A∽C。已知有X,Y使B?X?1AX, C?Y?1BY。令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。 3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);

Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A) =秩(PA)=秩(AQ) 证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩 ?1 (B)=秩(B?CAC)=秩(AC)=秩(A) (2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即 P?1AP?B?P?1f(A)P?f(B) 证明设f(x)?anx?an?1x nn n?1

a1x?a0 a1A?a0E a1B?a0E 于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1B n?1 kk 由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得 Bk?X?1AkX, ?1?1 anAn?an?1An?1?因此Xf?A?X?X ?a1A?a0E?X

可对角化矩阵的应用

可对角化矩阵的应用 矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类,特殊的矩阵,在理论上和应用上有着十分重要的意义。下面列举几个常见的可对角化矩阵的应用的例子。 1.求方阵的高次幂 例设V 是数域P 上的一个二维线性空间,12,εε是一组基,线性变换σ在12,εε下的矩阵A =2110?? ?-?? ,试计算k A 。 解:首先计算σ在V 的另一组基12,ηη下的矩阵,这里 ()()121211,,12-?? ηη=εε ? -?? , 且 σ 在 12 ,ηη下的矩阵为 1 112 1112 12 11111121012111 01 2 1 ----?????????? ?? ??== ? ??? ????? ?----- ????????? ?????显然 1 10 10 1k k ??? ? = ? ? ?? ?? ,再利用上面得到的关系1 1121111112101201---???????? = ? ??? ?---???????? 我们可以得到 1 21111111111211 101201121201111k k k k k k k ----+????????????????=== ? ??? ? ????? ? ------+???????????????? 2.利用特征值求行列式的值。 例:设n 阶实对称矩阵2A =A 满足,且A 的秩为r ,试求行列式2E A -的值。 解:设AX=λX ,X ≠0,是对应特征值λ的特征向量,因

为2A A =,则22X X λE =AE =A =λ,从而有()20X λ-λ=,因为X ≠0, 所以()1λλ-=0,即λ=1或0,又因为A 是实对称矩阵,所以A 相似于对角矩阵,A 的秩为r ,故存在可逆矩阵P ,使 1 00 0r E P AP -??= ??? =B ,其中 r E 是r 阶单位矩阵,从而 1102220 2r n r n r E E A PP PBP E B E -----=-=-= =2 3由特征值与特征向量反求矩阵。 若矩阵A 可对角化,即存在可逆矩阵P 使,其中B 为对角矩阵,则 例 设3阶实对称矩阵A 的特征值为,对应的特征向量为,求矩阵A 。 解:因为A 是实对称矩阵,所以A 可以对角化,即A 由三个线性无关的特征向量,设对应于231λ=λ=的特征向量为 () 123,,T P X X X =,它应与特征向量 1 P 正交,即 []1123,00P P X X X =++=,该齐次方程组的基础解系为 ()() 231,0,0,0,1,1T T P P ==-,它们即是对应于231λ=λ=的特征向量。 取 ()123010100,,101,010101001P P P P B -???? ? ? === ? ? ? ?-???? ,则 1P A P B -=, 于是1110 010******* 210101010 0011010011 1010022A PBP -? ? ?-?????? ? ??? ?===- ? ??? ? ??? ? ?--??????- ??? 4判断矩阵是否相似

高等代数与解析几何第七章(1-3习题)线性变换与相似矩阵答案

第七章线性变换与相似矩阵 习题 7.1 习题 7.1.1 判别下列变换是否线性变换? (1)设是线性空间中的一个固定向量, (Ⅰ),, 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (Ⅱ),; 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (2)在中, (Ⅰ), 解:不是的线性变换。因对于,有,,所以。 (Ⅱ); 解:是的线性变换。设,其中,,则有 ,

。 (3)在(Ⅰ)解:是中, , 的线性变换:设,则 , ,。 (Ⅱ)解:是 ,其中 的线性变换:设 是中的固定数; ,则 , ,。 (4)把复数域看作复数域上的线性空间, 共轭复数; 解:不是线性变换。因为取,时,有 ,即。,其中是的 , (5)在中,设与是其中的两个固定的矩阵,,。 解:是的线性变换。对,,有 , 。 习题7.1.2 在中,取直角坐标系,以表示空间绕轴由 轴向方向旋转900的变换,以表示空间绕轴由轴向方向

旋转 900的变换,以表示空间绕轴由轴向方向旋转900的变换。证明(表示恒等变换), , ; 并说明是否成立。 证明:在中任取一个向量,则根据,及的定义可 知:, ,, ; ; , , , ,即,故。 因为因为 , ,所以 , ,所以 。 。 因为, ,所以。 习题 7.1.3 在中,,,证明。证明:在中任取一多项式,有 。所以。 习题 7.1.4 设,是上的线性变换。若,证明 。 证明:用数学归纳法证明。当时,有

命题成立。假设等式对成立,即。下面证明等式对 也成立。因有 ,即等式对也成立,从而对任意自然数都成立。习题 7.1.5 证明(1)若是上的可逆线性变换,则的逆变换唯一; (2)若,是上的可逆线性变换,则也是可逆线性变换,且 。 证明:(进而(2)因1)设 ,都是 都是的逆变换,则有, 。即的逆变换唯一。 上的可逆线性变换,则有 。 ,同理有 由定义知是可逆线性变换,为逆变换,有唯一性得 。 习题7.1.6 设是上的线性变换,向量,且,,,都不是零向量,但。证明,,, 线性无关。 证明:设,依次用可得 ,得,而, 故即得 ;同理有: ;依次类推可得,即得 ,得, ,进而得。

矩阵初等变换及应用

矩阵初等变换及应用 王法辉 摘要:矩阵初等变换是高等代数的重要组成部分。本文对初等变换进行了研究探讨,详细介绍了与矩阵初等变换有关的基础知识。在阐述矩阵初等变换方法及应用原理的基础上,首先重点讨论该方法在解决高等代数相关计算问题上的应用,如求多项式的最大公因式、求逆矩阵解矩阵方程、求解线性方程组、判定向量的线性相关性、化二次型为标准型、求空间的基等。尤其是利用矩阵初等变换法求空间的基(解空间、特征子空间、核、值域等)的问题的计算,以具体实例生动的展示出问题的内在关系,最后给出了该方法在解决实际问题中的应用。本文理论分析与实际相结合,凸现了矩阵初等变换法直接、便利、有效的威力与作用。 关键词:矩阵初等变换;最大公因式;线性相关性;二次型;空间的基 1 导言 在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。在数学的学习和应用中,矩阵理论是高等代数的重要组成部分,矩阵初等变换方法更是贯穿高等代数理论的始终。应用初等变换证明命题过程容易被接受,同时也是解决高等代数相关计算问题最直接、便利、有效的方法。此外,还有大量的各种各样的,表面上看完全没有联系的问题的解决,都可以通过相同的方法实现:矩阵的初等变换。 因此,对矩阵初等变换方法及应用进行探讨,无疑是十分必要和重要的。 目前,有许多文献涉及到对矩阵初等变换方法该的讨论,但比较零散。在研读文献的基础上,对矩阵初等变换的内涵进一步挖掘,使矩阵初等变换方法的威力作用得以充分展示是重要也是必要的。 2 矩阵及其初等变换

2.1 矩阵 由n m ?个数)j ,,,2,1(==m i a ij (i =1,2, ,j =1,2,n , )排成m 行n 列 的数表 ? ? ??? ???????=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m 行n 列的矩阵,简称n m ?矩阵。 2.2 矩阵的初等变换及初等矩阵 矩阵有行列之分,因此有如下定义 定义1 矩阵的初等行(列)变换是指如下三种变换 (1)交换矩阵某两行(列)的位置,记为j i r r ? )(j i c c ?; (2)把某一行(列)的k 倍加到另一行(列)上,记为j i kr r + )(j i kc c +; (3)用一个非零常数k 乘以某一行(列),记为i kr )(i kc ,k ≠0; 矩阵的初等行变换及初等列变换统称为矩阵的初等变换。 定义2 由单位矩阵E 经过一次初等变换得到的方阵称为初等矩阵。有以下3种形式 (1)互换矩阵E 的i 行和j 行的位置,得 ? ???? ? ??? ?? ? ????? ???????????????? ?=1101111011),( j i P ; (2)用数域P 种非零数c 乘E 的i 行,得

最新对角化矩阵的应用本科

对角化矩阵的应用本 科

XXX学校 毕业论文(设计) 对角化矩阵的应用 学生姓名 学院 专业 班级 学号 指导教师 2015年 4 月 25 日

毕业论文(设计)承诺书 本人郑重承诺: 1、本论文(设计)是在指导教师的指导下,查阅相关文献,进行分析研究,独立撰写而成的. 2、本论文(设计)中,所有实验、数据和有关材料均是真实的. 3、本论文(设计)中除引文和致谢的内容外,不包含其他人或机构已经撰写发表过的研究成果. 4、本论文(设计)如有剽窃他人研究成果的情况,一切后果自负. 学生(签名): 2015 年4月25日

对角化矩阵的应用 摘要 矩阵对角化问题是矩阵理论中一个关键性问题.本文借助矩阵可对角化条件,可对角化矩阵性质和矩阵对角化方法来研究可对角化矩阵一些应用,包括求方阵的高次幂,反求矩阵,判断矩阵是否相似,求特殊矩阵的特征值,在向量空间中证明矩阵相似于对角矩阵,运用线性变换把矩阵变为对角矩阵,求数列通项公式与极限,求行列式的值. 【关键词】对角化;特征值;特征向量;矩阵相似;线性变换

Application of diagonalization matrix Abstract Matrix diagonalization problem is the key issue in the matrix theory. In this paper, by using matrix diagonalization conditions, diagonalization matrix properties and matrix diagonalization method we study some applications of diagonalization matrix, including for high-order exponent of matrix, finding the inverse matrix, matrix to determine whether it is similar, the eigenvalue of special matrix, in the vector space that matrix similar to a diagonal matrix, using linear transformation matrix is a diagonal matrix, for the series of general term formula and limit, the determinant of value. [Key words] The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation

矩阵相似的性质

1 矩阵的相似 1.1 定义 1.2性质 1.3定理(证明) 1.4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵 相似矩阵与矩阵的对角化 相似矩阵在微分方程中的应用 【1 】) 矩阵的相似及其应用 1.1 矩阵的相似 定义 1.1:设,A B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得1B X AX -=,就说A 相似于B 记作A B ∽ 1.2 相似的性质 (1)反身性A A ∽:;这是因为1A E AE -=. (2)对称性:如果A B ∽,那么B A ∽;如果A B ∽,那么有X ,使1B X AX -=,令1Y X -=,就有11A XBX Y BY --==,所以B A ∽。 (3)传递性:如果A B ∽,B C ∽,那么A C ∽。已知有,X Y 使1B X AX -=, C 1Y BY -=。令Z XY =,就有111C Y X AXY Z AZ ---==,因此,A C ∽。 1.3 相似矩阵的性质 若,n n A B C ?∈,A B ∽,则: (1)()()r A r B =; 引理:A 是一个s n ?矩阵,如果P 是一个s s ?可逆矩阵,Q 是n n ?可逆矩阵, 那么秩(A )=秩(PA )=秩(AQ ) 证明:设,A B 相似,即存在数域P 上的可逆矩阵C ,使得1B C AC -=,由引理2可知,秩 (B )=秩(1 B C AC -=)=秩(AC )=秩(A ) (2)设A 相似于B ,()f x 是任意多项式,则()f A 相似于()f B ,即 11()()P AP B P f A P f B --=?= 证明:设1110()n n n n f x a x a x a x a --=+++ 于是,1 110()n n n n f A a A a A a A a E --=+++ 1 110()n n n n f B a B a B a B a E --=++ + 由于A 相似于B ,则k A 相似与k B ,(k 为任意正整数),即存在可逆矩阵X ,使得

用矩阵初等变换逆矩阵

用矩阵初等变换逆矩阵

————————————————————————————————作者:————————————————————————————————日期:

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置 变换为我们所要求的1 A -,即 21121111111112112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=?=?L L L L L 111 21m R R R A E ---=L 111121m R R R A ----=L () () 1 22n n n n A E E A -???????→ 1* 1A A A -=( )()() 1111A A E A A A E E A ----==1111 21m A R R R ----=L ( )() 1 111 21m R R R A E E A ----=L

相似矩阵的性质及应用毕业论文

相似矩阵的性质及应用毕业论文 一.相似矩阵的定义 定义:设A 、B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得B=1-X AX ,就说A 相似于B ,记做B A ~. 二.相似矩阵的重要性质 性质1 数域P 上的n 阶方阵的相似关系是一个等价关系. 证明:1〉(反身性) 由于单位矩阵E 是可逆矩阵,且A=1-E AE ,故任何方阵A 与A 相似. 2〉(对称性) 设A 与B 相似,即存在数域P 上的可逆方阵C ,使得B=1-C AC ,由此可得A=CB 1-C =11)(--C B 1-C ,显然可逆,所以B 与A 相似. 3〉(传递性)设A 与B 相似,B 与C 相似,即存在数域P 上的n 阶可逆方阵P 、Q ,使B=1-P AP ,C=1-Q BQ ,则 C=BQ=1-Q 1-P APQ=1)(-PQ A (PQ ),从而A 与C 相似. 〈证毕〉 性质2 相似矩阵有相同的行列式. 证明:设A 与B 相似,即存在数域P 上的可逆矩阵C ,使得B=1-C AC ,两边取行列式得:|B |=|1-C AC |=|1-C ||A ||C |=|A ||1-C C |=|A |. 从而相似矩阵有相同的行列式. 〈证毕〉 下面先介绍两个引理 引理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上m ×s 矩阵,于是 秩(AB )≤min[秩(A ),秩(B )] (1) 即乘积的秩不超过各因子的秩. 证明:为了证明(1),只需要证明秩(AB )≤秩(A ),同时,秩(AB )≤秩(B ).

现在来分别证明这两个不等式. 设A=??????? ??nm n n m m a a a a a a a a a 2 1 22221 11211,B=?? ? ? ? ? ? ??ms m m s s b b b b b b b b b 21222 21112 11 令1B ,2B ,…,m B 表示B 的行向量,1C ,2C ,…n C ,表示AB 行向量.由计算可知,i C 的第j 个分量和m im i i B a B a B a +++ 2211的第j 个分量都等于kj m k ik b a ∑=1 ,因 而i C =m im i i B a B a B a +++ 2111 (i=1,2,…n ). 即矩阵AB 的行向量组n C C C ,,,21 可经B 的行向量组线性表出.所以AB 的秩不能超过B 的秩,也即, 秩(AB )≤秩(B ). 同样,令m A A A ,,21 表示A 的列向量,s D D D ,,21表示AB 的列向量,由计算可知 i D =11A b i +22A b i +…+m mi A b (i=1,2,…,s ). 这个式子表明,矩阵AB 的列向量可以经矩阵A 的列向量组表出,前者的秩不可能超 过后者的秩,这就是说,秩(AB )≤秩(A ). <证毕> 引理2:A 是一个s ×n 矩阵,如果P 是个s ×s 可逆矩阵,Q 是n ×n 可逆矩阵,那么 秩(A )=秩(PA )=秩(AQ ). 证明:令 B=PA,由引理1知秩(B )≤秩(A ); 但是由 A=1-P B, 又由 秩(A )≤秩(B ), 所以

矩阵对角化及应用论文

矩阵对角化及应用 理学院 数学082 缪仁东 指导师:陈巧云 摘 要:本文是关于矩阵对角化问题的初步研究,对矩阵对角化充要条件的归纳,总结,通过对实对称矩阵,循环矩阵,特殊矩阵对角化方法的计算和研究,让读者对矩阵对角化问题中求特征值、特征向量,求可逆矩阵,使对角化,提供了简便,快捷的求解途征. 关键词:对角矩阵;矩阵对角化;实对称矩阵;特征值;特征向量. 矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多.但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结.因此,我就针对这方面进行系统的分类归纳和总结,对一些理论进行应用和举例,给出算法.特别给出了解题时方法的选择. 1.矩阵对角化概念及其判定 所有非主对角线元素全等于零的n 阶矩阵,称为对角矩阵或称为对角方阵. 定义1.1 矩阵A 是数域P 上的一个n 级方阵. 如果存在一个P 上的n 级可逆矩阵X ,使 1X AX - 为对角矩阵,则称矩阵A 可对角化. 矩阵能否对角化与矩阵的特征值特征向量密切相关. 定义 1.2 设A 是一个n 阶方阵,λ是一个数,如果方程组 AX X λ= (1) 存在非零解向量,则称λ为的A 一个特征值,相应的非零解向量X 称为属于特征值λ的特征向量. (1)式也可写成, ()0E A X λ-= (2) 这是n 个未知数n 个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 =0E A λ-, (3)

即 11 121212221 2 0n n n n nn a a a a a a a a a λλλ------=--- 上式是以λ为未知数的一元n 次方程,称为方阵A 的特征方程. 其左端A E λ-是λ的n 次多项式,记作()f λ,称为方阵 的特征多项式. 11 1212122 21 2 ()||n n A n n nn a a a a a a f E A a a a λλλλλ------=-= --- 111n n n n a a a λλλ--=++ ++ 显然,A 的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,n 阶矩阵A 有n 个特征值. 设n 阶矩阵()ij A a =的特征值为12,,n λλλ,由多项式的根与系数之间的关系,不难证明 (ⅰ)121122n nn a a a λλλ+++=++ +; (ⅱ)12 n A λλλ=. 若λ为A 的一个特征值,则λ一定是方程=0A E λ-的根, 因此又称特征根,若λ为方程 =0A E λ-的i n 重根,则λ称为A 的i n 重特征根.方程 ()0A E X λ-=的每一个非零解向量都 是相应于λ的特征向量,于是我们可以得到求矩阵A 的全部特征值和特征向量的方法如下: 第一步:计算A 的特征多项式E A λ-; 第二步:求出特征方程=0E A λ-的全部根,即为A 的全部特征值; 第三步:对于 的每一个特征值λ,求出齐次线性方程组: ()0E A X λ-= 的一个基础解系12,,,s ξξξ,则A 的属于特征值λ的全部特征向量是 1122s s k k k ξξξ+++(其中12,,,s k k k 是不全为零的任意实数) . 设P 是数域, Mn (P ) 是P 上n ×n 矩阵构成的线性空间, A ∈Mn (P ) , 1,2t ,,λλλ 为 A 的t 个互不相同的特征值,高等代数第二版(北京大学数学系几何与代数教研室编)第四版(张和瑞、郝炳新编)课程中,我们学过了矩阵可对角化的若干充要条件如: (1) A 可对角化当且仅当A 有n 个线性无关的特征向量; (2) A 可对角化当且仅当特征子空间维数之和为n ;

相似矩阵的性质及应用 论文

相似矩阵的性质及应用论文 相似矩阵的性质及应用 学院:电力学院专业:电子科学与技术小组人员:韩燕军 201009931 高向红201009929 高亚伟 201009930 靳佳奇 201009932 一定义 -1设A,B为n阶矩阵,如果存在一个可逆矩阵P,使得PAP=B,则称矩阵A 和B相似,记为A~B 。 211,111,,,,,,例:设A=,B=,P= ,,,,,,,,,,,,01,12,10,,,,,, 211,1,,,,1,1,,,,,,-1,,,,因为PAP=-1 ,,,12,10,,,,,,,12,, 100111,,,,,, =,,==B ,,,,,,,,,,1101,11,,,,,, 所以A~B 二矩阵的相似关系具有的性质 -11 自反性 A~A 因为A=EAE 2对称性如果A~B,则B~A -1-1如果设A~B,则有可逆矩阵P,使B=PAP,令C=P, -1- 1 -1-1因为A=(P)B P=CBC,则B~A 3传递性如果A~B,B~C,则A~C -1-1如果设A~B,B~C,则存在可逆矩阵M,N,使B= MAM,C= NAN, -1-1-1故C= N M AMN= (MN) A(MN),所以A~C 三. 矩阵的其它性质 1.若A~B,则A与B的行列式相等 2. 若A~B,则A可逆的充要条件是B可逆 3. 若A~B,且A可逆,则A与B的逆矩阵也相似 4. 若A~B,则A与B有相同的特征多项式,但特征多项式相等的矩阵并不一定相似

5. 若A~B,则r(A)= r(B) TT 例:证明若A~B,则A~B -1T-1TTT-1T-1T 证:因为B=PA P,所以B=(PAP)=PA(P)=CAC T-1TT 其中P= C ,于是A~B 四求下列矩阵的特征值和特征向量: (1); 解故A的特征值为1(三重) 对于特征值1 由 T得方程(AE)x0的基础解系p1(1 1 1) 向量p1就是对应于特征值1的特征值向量. (2); 解 故A的特征值为10 21 39 对于特征值10 由

矩阵相似的若干判别法及应用讲解

本科生毕业论文 矩阵相似的若干判别法及应用 学号: 2011562010 姓名:邵坷 年级: 2011级本科班 系别:数学系 专业:数学与应用数学 指导教师:由金玲 完成日期: 2015 年4月30日

承诺书 我承诺所呈交的毕业论文(设计)是本人在指导教师指导下进行研究工作所取得的研究成果.据我查证,除了文中特别加以标注的地方外,论文中不包含他人已经发表或撰写过的研究成果.若本论文(设计)及资料与以上承诺内容不符,本人愿意承担一切责任. 毕业论文(设计)作者签名: 日期:年月日

目录 摘要 ..................................................................................................................................... I Abstract .................................................................................................................................... II 前言 (1) 第一章基本概念 (2) 1.1 矩阵 (2) 1.1.1 矩阵的概念 (2) 1.1.2 矩阵的性质 (2) 1.2 矩阵相似 (3) 1.2.1矩阵相似的概念 (3) 1.2.2 矩阵相似的性质 (4) 第二章矩阵相似的判别 (5) 2.1 特征值与特征向量法判定 (5) 2.1.1 特征值和特征向量的定义及求法 .................................. 错误!未定义书签。 2.1.2 特征值和特征向量的基本性质与矩阵相似的判定 (5) 2.2用初等变法换判定 (8) 2.3 应用分块矩阵相似判定 (10) 第三章矩阵相似的应用 (13) 3.1 利用相似变换把方阵对角化 (13) 3.2 矩阵相似性质的简单应用 (13) 3.3 矩阵相似在实际生活中的应用 (14) 结论 (16) 参考文献 (17) 致谢 (18)

矩阵的对角化的应用

矩阵的对角化的应用 摘要:矩阵是高等代数中的一个重要的基本概念,是代数学的一个主要研究对 象。对角矩阵作为一种特殊的矩阵,在理论研究和矩阵性质推广中有重要意义。本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用. 关键词:对角化;特征值;特征向量;相似 一、概念 所谓矩阵可对角化指的是矩阵与对角阵相似 定义1:如下形式的n×n矩阵= 称为对角矩阵简记为 =diag(,,,) 定义2:把矩阵A(或线性变换)的每个次数大于零的不变因子分解成互不相同的首项为1的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次数计算)称为矩阵A(或线性变换)的初等因子。 定义3:设A是数域P上的n级矩阵,如果数域P上的多项式f(x)使得f(x)=0,则称f(x)以A为根,在以A为根的多项式中,次数最低且首项系数为1的多项式称为A的最小多项式。 定义4:设V是P上的线性空间,是V上的一个变换,如果对任意V和 P都有,则称为V的一个线性变换

定义5:设是数域P上线性空间V的一个线性变换,如果存在P中的一个数 和V中非零元素使得,则称为的一个特征值,而称为的属于特征值的一个特征向量,由的属于特征值的全部特征向量再添上零元素构成的集合构成V的一个子空间,称为的一个特征子空间。 定义6:设A,B为数域P上的两个n级矩阵,如果存在数域P上的n级可逆矩阵X 使得B=AX,则称A相似于B,记为A B,并称由A变到B得变换为相似变换,称X为相似变换矩阵。 二〃矩阵对角化条件 常用的充要条件 (1)可对角化当且仅当有个线性无关的特征向量; (2)可对角化当且仅当特征子空间维数之和为; (3)可对角化当且仅当的初等因子是一次的; (4)可对角化当且仅当的最小多项式无重根。[2-5] 三. 实对称矩阵对角化的一种简化方法 设是实对称矩阵,求正交矩阵使的问题,一般方法可简述为: (1)求特征值; (2)求对应的特征向量; (3)将特征向量正交标准化; (4)写出及.

相关主题
文本预览
相关文档 最新文档