当前位置:文档之家› 物理化学第一章习题及一章知识点

物理化学第一章习题及一章知识点

物理化学第一章习题及一章知识点
物理化学第一章习题及一章知识点

第一章化学热力学基础

1.1 本章学习要求

1. 掌握化学热力学的基本概念和基本公式

2. 复习热化学内容;掌握Kirchhoff公式

3. 掌握熵变的计算;了解熵的统计意义

1.2内容概要

1.2.1热力学基本概念

1. 体系和环境

体系(system):热力学中,将研究的对象称为体系。热力学体系是大量微观粒子构成的宏观体系。

环境(surroundings):体系之外与体系密切相关的周围部分称作环境。体系与环境之间可以有明显的界面,也可以是想象的界面。

①敞开体系(open system):体系与环境间既可有物质交换,又可有能量交换。

②封闭体系(closed system):体系与环境间只有能量交换,没有物质交换。体系中物质的量守恒。

③孤立体系(isolated system):体系与环境间既无物质交换,又无能量交换。

2. 体系的性质(property of system)

用来描述体系状态的宏观物理量称为体系的性质(system properties)。如T、V、p、U、H、S、G、F等等。

①广度性质(extensive properties):体系这种性质的数值与体系物质含量成正比,具有加和性。

②强度性质(intensive properties):这种性质的数值与体系物质含量无关,无加和性。如T、p、d(密度)等等。

3. 状态及状态函数

状态(state):是体系的物理性质及化学性质的综合表现,即体系在一定条件下存在的形式。热力学中常用体系的宏观性质来描述体系的状态。

状态函数(state function):体系性质的数值又决定于体系的状态,它们是体系状态的单

值函数,所以体系的性质又称状态函数。

根据经验知,一个纯物质体系的状态可由两个状态变量来确定,T、p、V是最常用的确定状态的三个变量。例如,若纯物质体系的状态用其中的任意两个物理量(如T、p)来确定,则其它的性质可写成T、p的函数Z = f (T、p)。

状态函数的微小变化,在数学上是全微分,并且是可积分的。体系由状态1变到状态2,状态函数的改变量只与体系的始、终态有关,与变化过程无关。

4. 过程与途径

过程(process):状态变化的经过称为过程。

途径(path):完成变化的具体步骤称为途径。

化学反应进度(advancement of reaction)

化学反应aA + dD = gG + hH 即0=

式中R B表示各种反应物和产物,是反应物和产物的化学计量数,对于反应物,是

负值,即;对于产物是正值,即。的量纲为1。

在反应开始时,物质B的量为n B (0),反应到t时刻,物质B的量为n B (t),反应进度定义为

单位是mol。

反应的微小变化即

或有限变化

5. 热力学平衡态(thermodynamic equilibrium)

体系在一定外界条件下,经足够长的时间后,可观察的体系性质均不随时间变化,这种状态称为定态。若将体系与环境隔离,体系中各部分可观察的体系性质仍不随时间变化,体系所处的状态称作热力学平衡态。

体系的热力学平衡态应同时包括以下几个平衡:

①热平衡(thermal equilibrium):体系各部分的温度T相等且与环境温度相等。

②力平衡(mechanic equilibrium ):体系各部分的压力相等且体系与环境的边界不发生相对位移。

③相平衡(phase equilibrium):体系内各相的组成和数量不随时间变化。

④化学平衡(chemical equilibrium):体系的组成不随时间变化。

6.热与功

热(heat):因体系与环境间有温度差所引起的能量流动称作热,热用

Q表示。本书规定,体系吸热,Q为正值;体系放热,Q为负值。

功(work):体系与环境间因压力差或其它机电“力”引起的能量流动

称作功,功以符号W表示。本书规定,环境对体系做功,W>0;体系对环境做功,W<0。

体积功(volume work):热力学中,体积功最为重要。体积功是因体系体积发生变化做的功。设体系反抗外力p e,体积膨胀了d V,因为力(p)的作用方向与体积变化方向相反,故体系所做功是负值。计算体积功的通式是

δW=-p e d V

若p e的变化是连续的,在有限的变化区间可积分上式求体积功

W= -∫p e d V

在可逆过程中,可用体系的压力p代替环境压力p e,即p = p e。

W= -∫p d V

一些特定情况下,体积功的计算如下:

恒外压过程W= -p eΔV

定容过程W= -∫p e d V=0

理想气体的定温可逆过程

理想气体自由膨胀(p e=0)过程W=0

其它功(nonvolume work):除体积功以外,将电功、表面功等等称为其它功,用符号W/表示,W/也称非体积功。

1.2.2 热力学能和热力学第一定律

热力学能(thermodynamic energy):封闭体系的一种性质,它在指

定始终态间的变化的改变值恒等于过程的Q+W,而与途径无关。这个性质称为热力学能,用符号U表示。体系的热力学能的绝对值无法知道。

封闭体系热力学第一定律(first law of thermodynamics)就是能量守衡定律在热力学中的应用,其数学表达式为

d U=δQ+δW 或ΔU= Q+ W

1.2.3 焓

焓(enthalpy)定义为H≡U+ pV焓是状态函数,广度量,绝对值无法确定。

1.2.4 热和热容

定容热Q V=ΔU;δQ V = d U封闭体系无其它功定容过程

定压热Q p=ΔH;δQ p = d H封闭体系无其它功定压过程

相变热ΔH= Q p定温定压下封闭体系相变过程

热容(heat capacity) 体系无相变、无化学变化时温度改变1K所需的热。

定容摩尔热容(molar heat capacity at constant volume) ;

定压摩尔热容(molar heat capacity at constant pressure) ;

理想气体(ideal gases) C p,m-C V,m=R

摩尔热容与温度的经验公式C p,m= a + bT + cT2

C p,m= a + bT + cT-2

1.2.5 热力学第一定律在理想气体中的应用

1.Joule(焦耳)实验

由理想气体自由膨胀(向真空膨胀)直接观测结果d T=0,(体系温度不变)得出结论:

理想气体的热力学能U及焓H只是温度的函数,与体积、压力的变化无关。

2. 理想气体ΔU、ΔH的计算

定温过程ΔU=0,ΔH=0,,

无化学变化、无相变的任意变温过程

d U=n C V,m d T,

d H=n C p,m d T,

3. 理想气体绝热可逆状态方程

Q=0,(理想气体绝热可逆或不可逆过程)

(理想气体绝热可逆过程)

1.2.6 热力学第一定律在化学变化中应用

1.化学反应热效应

化学反应aA + dD = gG + hH

化学反应摩尔焓变是当Δ=1mol时的定压热

化学反应摩尔热力学能变化是当Δ=1mol的定容热

2. 化学反应的Δr H m与Δr U m的关系

Δr H m(T)=Δr U m(T) + pΔV≈Δr U m(T)(无气相物质的化学反应体系)

Δr H m(T)=Δr U m(T) + RT(有气相物质的化学反应体系)

3. 化学反应摩尔焓变Δr H m与温度的关系Kirchhoff公式

4.计算

物质的标准态:热力学规定:温度为T,p =100kPa的纯物质状态,即p 下的纯固体、纯液体状态;p 下的纯气体的理想气体状态。

标准摩尔生成焓(standard molar enthalpy of formation):指定温度T及标准状态下,由

稳定单质生成1mol产物时的反应焓变,称作标准摩尔生成焓,符号。

标准摩尔燃烧焓(standard molar enthalpy of combustion):指定温度T及标准状态下,燃

烧1mol有机化合物时的反应热称作该化合物的标准摩尔燃烧焓,符号

Гecc定律

一个化学反应不管一步完成或几步完成,反应的热效应是相同的。

Гecc定律不仅适用于反应热的计算,而且适用于一切状态函数变化值的计算。

5.自发过程及其不可逆性

(1)自发过程(spontaneous process):不靠外力就能自动进行的过程。自发过程都有确定的方向,它的逆过程绝不会自发进行。若靠外力干涉,使原过程逆相进行,体系恢复原状,则在环境中会留下无论如何也不能消除的后果。这种不能消除的后果就是自发过程的不可逆性。即一切自发过程都是不可逆的。

(2)可逆过程(reversible process):可逆过程是由一连串近平衡态的微小变化组成的。变化的动力与阻力相差无限小,因而可逆变化进行的无限缓慢。

循原过程相反方向无限缓慢变化,可使体系与环境同时恢复原状,可逆过程的后果是可以消除的。

可逆过程中,体系对环境做功最大,环境对体系做功最小。

过程在热力学上是否可逆,最终归结为过程热功的转换问题。由于热不能完全变为功,所以凡是涉及热的过程都是不可逆的。

1.2.7 热力学第二定律

Kelvin表述:“不可能从单一热源取热使之完全变为功而不产生其它变化”。单一热源取热使之完全变为功虽不违背热力学第一定律,但涉及热功转换现象。此表述也可说成“第二类永动机不可能制成”。

Clausius表述:“热不能自动地由低温热源传到高温热源而不发生其它变化”。

两种表述都断言:一切实际过程都是不可逆的。

1.2..8 熵(entropy)

熵是体系的性质,状态函数,以符号S表示。

式中,为可逆过程的热,T是可逆过程体系的温度。

熵的微观解释:体系任一平衡的宏观状态都与一定的微观状态数,即称混乱度相对应。混乱度(Ω)(disorder)、微观状态数(number of complexion)是体系的单值函数,熵与混乱度的关系可由波兹曼(Boltzman)公式表示,

S = klnΩ

2. Clausius(克劳修斯)不等式(Clausius ineauality):

“=”适用于可逆过程,“>”适用于不可逆过程。该不等式表示:可逆过程的热温商

等于过程的熵变;不可逆过程的热温商小于过程的熵变d S。

3. 熵增加原理

将Clausius不等式用于孤立体系时有=0,

所以(d S)孤≥0 不等式表示自发过程

等式表示可逆过程

此式称作熵增加原理(principle of entropy increacing),也是热力学第二定律(second law of thermodynamics)的熵表述。

1.2.9 热力学第三定律及规定熵、标准熵

1. 热力学第三定律(third law of thermodynamics)

在绝对温度零度时,任何纯物质完美晶体的熵都等于零,

或S0K=0

2. 规定熵(conventional entropy)

将纯物质在定压下从0K加热到温度T K,过程的熵变即为物质B的规定熵,符号为S T

3. 标准熵(standard entropy)

1mol纯物质B在指定温度及标准状态的规定熵称作标准熵。符号为

,单位是J·K-1·mol-1。由热力学数据表查得的均为T=298K时的标准熵,即。

1.2.10 熵变ΔS的计算

1. 体系单纯p、V、T变化过程的ΔS

液体或固体(凝聚相)的p、V、T变化

定压变温过程

定压下,

若C p,m为常数,则。

定容变温过程

若C V,m为常数,则。

理想气体单纯p、V、T变化过程的ΔS

理想气体混合过程的ΔS

2. 相变过程的熵变ΔS

在两相平衡共存的温度和压力下的相变是可逆相变

α(T,p)→β(T,p)

不可逆相变,需设计一可逆过程完成始、终态间的变化,通过此过程求熵变。

3. 化学变化的熵变ΔS

298K、p 下,化学反应aA + dD = gG + hH

式中,为物质B在298K、p 下的标准熵,可由热力学数据表查得。

其它温度T、p 下的ΔS(T)

式中C p,m(B)为物质B的定压摩尔热容。

1.3 例题与习题解答

例1-1 理想气体自由膨胀过程中,先进入真空的气体会对余下的气体产生压力,而且随进入真空气体的量越大,压力越大,余下气体膨胀反抗的压力会更大,为什么体积功还是零?

答:热力学讲的体积功是指体系反抗外压做的功,W=-p e d V。体系膨胀过程中,p e=0,所以,功等于零。而体系内一部分物质对另一部分的压力引起的作用,在热力学定律中不予考虑。热力学定律是对体系整体而言。

例1-2 试计算1mol, 100℃,4×104Pa的水蒸气变为100℃及101.325kPa时的水,该过程的?U和?H。设水蒸气为理想气体,水的摩尔汽化热为40.67 kJ·mol-1。

解:要计算在不同压力下的相变,需将此过程设计成下列可逆变化:①定温可逆变压,②可逆相变:

过程①水蒸气为理想气体,温度不变,则?U1 = ?H1 = 0;

过程②?H2 = -1×40.67=-40.67 kJ

?U2 = ?H2 -p?V = ?H2 -p(V l-V g)

≈?H2 + pV g = ?H2 + RT

=-40.67+8.314×393×10-3=-37.57 kJ

?U = ?U1 + ?U2 = -37.57 kJ

?H = ?H1 +?H2 =-40.67 kJ

例1-3 1mol某理想气体,C p,m=29.36J·K-1·mol-1,在绝热条件下,由273K、100 kP

膨胀到203K、10 kPa,求该过程Q、W、?H 、?S。

解:理想气体绝热过程Q = 0,因此

?U=∫n C v,m d T

= 1×(29.36-8.314)×(203-273)=-1473.22 J

?H =∫n C p,m d T= 1×29.36×(203-273)=-2055.2 J

W = ?U = -1473.22 J

为求?S需将该过程设计成①定温可逆过程和②定压可逆过程,

273K、10 kPa

过程①:

=19. 14 J·K-1

过程②:

=-8.69J·K-1

因此,?S = ?S1 + ?S2 =19.14-8.69 = 10.44 J·K-1

例1-4 1mol单原子理想气体从状态A出发,沿ABCA

经历一循环,T A=400K,V2=2V1,p2=2p1, 求(1)AB过程Q、W、?U、?S;(2)BC过程Q、?S;(3)CA过程Q、W;(4)整个过程?G、?S、W。

解:(1)AB过程是一个定容过程,但不是定温过程,

p A V A=n RT A, p B V B=n RT B, p A=2p B, V A=V B, 因此,

K

?U=∫n C v,m d T =n C v,m?T = 1×3/2×8.314×(200-400)= -2494.2 J

由于d V=0,∴W AB=0 ?U = Q=-2494.2 J

= -8.64 J·K-1

(2)BC过程是定压过程,也不是定温过程,

p B V B=n RT B, p C V C=n RT C, p B=p C , 2V B=V C

K

?H =∫n C p,m d T= n C p,m(T C-T B)= 1×5/2×8.314×(400-200) = 4157J

?H=Q p2=4157J

虽然该过程是一个定压过程,但熵是一个状态函数,可以用可逆过程熵变的公式计算。

14.41 J·K-1

(3)CA过程是定温压缩过程:?U=?H=0;

2305 J Q3=-W=-2305 J ?S AC=?S AB+?S BC=-8.64+14.41=5.77 J·K-1

(4)整个循环过程:?G=?S=0,

Q= Q1+ Q2+ Q3 = -2494.2+4157-2305 = -642.2 J

W = -Q =642.2 J

习题1—1气体体积功的计算式W=-

d p V ?外 中,为什么要用环境的压力p 外?在什么情

况下可用体系的压力p ?

答:因为体积功是反抗外压而做功,所以要用p 外;当是可逆过程时,体系压力与外压相差无限小时,此时可用体系的压力。

习题1—2 298K 时,5mol 的理想气体,在(1)定温可逆膨胀为原体积的2倍;(2)定压下加热到373K 。已知C v,m =28.28J ·mol -1·K -1。计算两过程的Q 、W 、?U 和?H 。

解:(1)理想气体定温可逆膨胀时 2

21121

d d ln V V V V V nRT W p V V nRT V V =-=-=-?? 式中V 2 = 2V 1, T = 298K, n = 5mol

∴ 258.314298ln 8586.6J 1

W =-??=- ?U = 0, ?H = 0 ∴ Q = -W = 8586.6 J

(2 ) 21m m 21d V p p p V Q H nC T nC T T =?=

=-?,,()

其中 C p ,m = C v ,m + R

∴ C p ,m = 28.28 + 8.314 = 36.594 J ·mol -1·K -1

∴ Q p = ?H = 5×36.594×(373-298) = 13722.7 J

21m m 21d V V V V U nC T nC T T ?==-?,,()= 5×28.28×(373-298) = 10605 J W = ?U-Q =10605-13722.7 = -3117.7 J

习题1—3 容器内有理想气体,n =2mol ,p =10 p

,T =300K 。求(1)在空气中膨胀了

1dm 3,做功多少?(2)膨胀到容器内压力为l p ,做了多少功?(3)膨胀时外压总比气体的压力

小d p ,问容器内气体压力降到1 p 时,气体做多少功?

解:(1)在空气中膨胀,即恒定外压p e = p

W 1 = -p e ?V =-101.325×1 = -101.325J

(2 ) 由理想气体状态方程 1212

==nRT nRT V V p p --, ?V W 2 = -p e ?V

= -101.325×2×8.314×300×= -4489.6 J

= V 2 - V 1 =

习题1—3 容器内有理想气体,n =2mol ,p =10 p

,T =300K 。求(1)在空气中膨胀了

1dm 3,做功多少?(2)膨胀到容器内压力为l p ,做了多少功?(3)膨胀时外压总比气体的压力

小d p ,问容器内气体压力降到1 p 时,气体做多少功?

解:(1)在空气中膨胀,即恒定外压p e = p

W 1 = -p e ?V =-101.325×1 = -101.325J

(2 ) 由理想气体状态方程

?V = V 2 - V 1 =

W 2 = -p e ?V = -101.325×2×8.314×300×

= -4489.6 J

(3 ) 该过程为定温可逆过程

= -2×8.314×300× = -11486.2 J

习题l —4 1mol 理想气体在300K 下,1dm 3定温可逆地膨胀至10dm 3,求此过程的Q 、W 、?U 及?H 。

解:理想气体定温可逆过程

= -1×8.314×300×= -5743 J

理想气体定温下?U = 0,?H = 0

∴Q = -W = 5743 J

习题l—5 1mol H2由始态25℃及p 可逆绝热压缩至5dm3,求(1)最后温度;(2)最后压力;(3)过程做功。

解:(1)设氢气为理想气体,则1 mol H2 25℃时的体积为

dm3 V2 = 5 dm3

理想气体绝热可逆压缩时δQ = 0 , d U =δW

d U = nC v,m d T =-p d V根据理想气体接绝热过程方程式

对于双原子理想气体

解得T2 = 563K 根据理想气体绝绝热过程方程式

p2 = 937.5 kPa

(3 ) W = ?U = = C v,m (T2–T1) = ×8.314×(563-298)= 5508 J

习题1—6 40g氦在3 pθ 下从25℃加热到50℃,试求该过程的?H、?U、Q和W。设氦是理想气体。

解:

单原子理想气体,

W = ?U-?H

=6235.5-10392.5 = -4157 J

习题1—7 已知水在100℃时蒸发热为2259.4J·g -1,则100℃时蒸发30g水,过程的?U、?H、Q和W为多少?(计算时可忽略液态水的体积)

解:Q p= ?H = C p,g·m = 2259.4×30 = 67782 J

将水蒸气视为理想气体,气体积为,

式中p = p e ,忽略液态水的体积,那么

W = -p e ?V = -p e (V g –V l) = = –nRT

= -30÷18×8.314×373 = -5168.5 J

?U = ?H + W = ?H-p?V = 67782 -5168.5 = 62613.5 J

习题1—8 298K时将液态苯氧化为CO2和液态H2O,其定容热为-3267 kJ·mol-1,求定压反应热为多少?

解:C6H6(l) + O2(g) = 6CO2(g) + 3H2O(l)

?rUm = Q V = -3267 kJ·mol-1

?rHm= ?rUm + ∑νB(g)RT = -3267 + (6–)×8.314×298×10-3 = -3260.8 kJ·mol-1习题1—9 300K时2mol理想气体由1dm3可逆膨胀至10dm3,计算此过程的熵变。

解:38.29 J·mol-1·K-1

习题1—10 已知反应及有关数据如下:C2H4(g) +H2O(g) == C2H5OH(l)

?f H m / kJ·mol-152.3 -241.8 -277.6

C p,m / J·mol-1·K-143.6 33.6 111.5

计算(1)298K时反应的?r H m 。(2)反应物的温度为288K,产物温度为348K时反应的?r H m 。

解:(1)= -277.6 -(52.3-241.8)= -88.1 kJ·mol-1?H1 = -88.1 kJ·mol-1

= (43.6 + 33.6) ×(298 -288)×10-3 = 0.772 kJ·mol-1

= 111.5×(348 -298)×10-3 = 5.575 kJ·mol-1?H = ?H1 + ?H2 + ?H3 = -88.1 + 0.772 + 5.575 = -81.8 kJ·mol-1

习题1—11 定容下,理想气体lmol N2由300K加热到600K,求过程?S。已知C p,m N2=(27.00十0.006T)J·K-1·mol-l。

解:

= 14.76 J ·mol -1·K -1

习题1—12 若上题是在定压下进行,求过程的熵变。

解:理想气体定压过程熵变

= 20.51 J ·mol -1·K -1

习题1—13 101.3kPa 下,2mol 甲醇在正常沸点337.2K 时气化,求体系和环境的熵变各为多少?已知甲醇的气化热?H m =35.1kJ ·mol -1。

解:101.3kPa,337.2K 甲醇气化,发生可逆相变

= 0.208 kJ ·mol -1·K -1

= -0.208 kJ ·mol -1·K -1

习题l —14 绝热瓶中有373K 的热水,因绝热瓶绝热稍差,有4000 J 热流入温度为298K 的空气中,求(1)绝热瓶的?S 体;(2)环境的?S 环;(3)总熵变?S 总。

解:(1) 4000==298

Q S Q ?-体环环= 10.72 J ·K -1 (2) ()

22222222r m O ,m,O CO ,m,CO H O ,m,H O N ,m,N 298d T p p p p H n C n C n C n C T ?=

+++?= 13.42 J ·K -1 (3)?S 总 = ?S 体 + ?S 环 = -10.27 + 13.42 =2.7 J ·K -1

习题1—15 在298K 及p

下,用过量100%的空气燃烧1molCH 4,若反应热完全用于加热产物,求燃烧所能达

解:甲烷燃烧的化学反应如下

CH4(g) + 2O2(g) === CO2(g) + 2H2O(g) N2(g)

?f H m / kJ·mol-1-74.81 0 -393.51 -241.82

C p,m / J·mol-1·K-128.17 26.75 29.16 27.32

空气过量100%时,O2量为2×(1+100%)= 4mol, 甲烷燃烧后剩余

各气体的量如下:

O2(g):2mol CO2(g):1mol H2O(g):2mol

N2(g):4mol×0.79/0.21=15.05mol

= -393.51 -2×241.82 -(-74.81)= -802.34 kJ·mol-1

若该反应热完全用于加热产物,则

802.34×103 =(2×28.17 + 1×26.75 + 2×29.16 + 15.05×27.32)×(T-298)

讨论:(1)298K及p 下,石墨能否转变为金刚石。(2)用加热或加

压的方法能否使石墨转变为金刚石,并计算转变条件。

解:(1)C(石墨) →C(金刚石)

?c H m / kJ·mol-1-393.51 -395.40

S m / J·mol-1·K-1 5.740 2.377

ρ/kg·m-32260 3513

= -393.51-(-395.40)= 1.89 kJ·mol-1

= 2.377-5.740 = -3.363 J·mol-1·K-1

= -6.342 J·mol-1·K-1

?S总= ?S体+ ?S环= -3.363-6.342 = -9.705 J·mol-1·K-1<0

所以,298K及p 下,石墨不能转变为金刚石。

(2)要想使石墨转变为金刚石,定压下,应有≤0,即

≤0 T≤=-562K

不能达到如此低的温度,故不能改变温度使石墨转变为金刚石。

298K定温下,,

∴=(V金刚石-V石墨)(p2-p )

= (3513÷12-2260÷12)×(p2-101.3)≤0

∴p2∴1.5?109Pa

298K时,不能达到如此大的压力,故不能用加压的方法使石墨转变为金刚石。

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

物理化学朱传征第一章习题

例1-1 在25℃ 时,2mol 气体的体积为153dm ,在等温下此气体:(1)反抗外压为105 P a ,膨胀到体积为50dm 3;(2)可逆膨胀到体积为50dm 3。试计算各膨胀过程的功。 解(1)等温反抗恒外压的不可逆膨胀过程 {}53e 21()1010(5015)J 3500J W p V V -=--=-??-=- (2)等温可逆膨胀过程 {}2 1 2 1 d ln 28.314298.2ln(5015)J 5970J V V V W p V nRT V =-=-=-??=-? 【点评】题中虽未作说明,但可将气体视为理想气体。由题意判断得出:(1)为等温不可 逆过程;(2)为等温可逆过程。两种过程需采用不同的计算体积功公式。若知道p 1、p 2,可 逆功2 1 ln p W nRT p =。 例1-2 在等温100℃时,1mol 理想气体分别经历下列四个过程,从始态体积V 1=25dm 3变化到体积V 2=100dm 3:(1)向真空膨胀;(2)在外压恒定为气体终态压力下膨胀至终态;(3)先在外压恒定的气体体积50dm 3时的气体平衡压力下膨胀至中间态,然后再在外压恒定的气体体积等于100dm 3时的气体平衡压力下膨胀至终态;(4)等温可逆膨胀。试计算上述各过程的功。 解 (1) 向真空膨胀 p e =0 ,所以 10W = (2) 在外压恒定为气体终态压力下膨胀至终态 18.314(100273.15)kPa 31.02kPa 100nRT p V ??+?? = ==???? e {}2e 21()31.02(10025)J 2327J W p V V =--=-?-=- (3) 分二步膨胀 第一步对抗外压 p ′18.314373.15kPa 62.05kPa 50nRT V ???? = ==???? {}62.05(5025)J 1551J W p V '=-?=-?-=- 第二步对抗外压 p 〞=31.02kPa {}"31.02(10050)J 1551J W p V ''=-?=-?-=-

物理化学习题及答案

物理化学习题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

物理化学期末复习 一、单项选择题 1. 涉及焓的下列说法中正确的是() (A) 单质的焓值均等于零 (B) 在等温过程中焓变为零 (C) 在绝热可逆过程中焓变为零 (D) 化学反应中系统的焓变不一定大于内能变化 2. 下列三种胶体分散系统中,热力不稳定的系统是:() A.大分子溶胶 B.胶体电解质 C.溶胶 3. 热力学第一定律ΔU=Q+W 只适用于() (A) 单纯状态变化 (B) 相变化 (C) 化学变化 (D) 封闭物系的任何变化 4. 第一类永动机不能制造成功的原因是() (A) 能量不能创造也不能消灭 (B) 实际过程中功的损失无法避免 (C) 能量传递的形式只有热和功 (D) 热不能全部转换成功 5. 如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有() (A) W =0,Q <0,U <0 (B). W>0,Q <0,U >0 (C) W <0,Q <0,U >0

(D). W <0,Q =0,U >0 6. 对于化学平衡, 以下说法中不正确的是() (A) 化学平衡态就是化学反应的限度 (B) 化学平衡时系统的热力学性质不随时间变化 (C) 化学平衡时各物质的化学势相等 (D) 任何化学反应都有化学平衡态 7. 封闭系统内的状态变化:() A 如果系统的?S >0,则该变化过程自发 sys B 变化过程只要对环境放热,则该变化过程自发 ,变化过程是否自发无法判断 C 仅从系统的?S sys 8. 固态的NH HS放入一抽空的容器中,并达到化学平衡,其组分数、独立组分 4 数、相数及自由度分别是() A. 1,1,1,2 B. 1,1,3,0 C. 3,1,2,1 D. 3,2,2,2 9. 在定压下,NaCl晶体,蔗糖晶体,与它们的饱和混合水溶液平衡共存时,独立组分数C和条件自由度f':() A C=3,f'=1 B C=3,f'=2 C C=4,f'=2 D C=4,f'=3 10. 正常沸点时,液体蒸发为气体的过程中() (A) ΔS=0 (B) ΔG=0

物化,第1章 热力学第一定律---补充练习题

第二章 热力学第一定律 (一) 填空题 1. 在一绝热容器中盛有水,将一电阻丝浸入其中,接上电源一段时间(见下左图)当选择 不同系统时,讨论Q 和W 的值大于零、小于零还是等于零。 系统 电源 电阻丝 水 电源+电阻丝 水+ 电阻丝 水+电阻丝+电源 Q W U 参考答案 2. 298K 时,反应CH 3CHO(g) = CH 4(g) + CO(g)的反应热 r H m 0 = mol -1,若反应恒压的热容r C p,m = Jmol -1K -1,则在温度为 时,反应热将为零。(设:r C p,m 与温度无关)。 3. 对理想气体的纯PVT 变化,公式dU=nC V,m dT 适用于 过程;而真实气体 的纯PVT 变化,公式dU=nC V,m dT 适用于 过程。 4. 物理量Q 、W 、U 、H 、V 、T 、p 属于状态函数的有 ;属于途 径函数的有 。状态函数中属于强度性质 的 ;属于容量性质的有 。 5. 已知反应 C(S)+O 2CO 2 r H m 0<0 若该反应在恒容、绝热条件下进行,则ΔU 于 零、ΔT 于零、ΔH 于零;若该反应在恒容、恒温条件下进行,则ΔU 于零、 ΔT 于零、ΔH 于零。(O 2、CO 2可按理想气体处理) 6. 理想气体绝热向真空膨胀过程,下列变量ΔT 、ΔV 、ΔP 、W 、Q 、ΔU 、ΔH 中等于零的 有: 。 7. 1mol 理想气体从相同的始态(p 1、T 1、V 1),分别经过绝热可逆膨胀至终态(p 2、T 2、V 2)和经绝 热不可逆膨胀至终态('2'22V T p 、、)则’‘,2222 V V T T (填大于、小于或等 于)。 8. 某化学在恒压、绝热只做膨胀功的条件下进行,系统温度由T 1升高至T 2,则此过程ΔH 零,如果这一反应在恒温(T 1)恒压和只做膨胀功的条件下进行,则其ΔH 于零。 9.范德华气体在压力不太大时,有b RT a V T V T m p m -=-??2)(且定压摩尔热容为C P,m 、则此气体的焦——汤系数μJ-T = ,此气体节流膨胀后ΔH 0。 10. 1mol 单原子理想气体(C V,m =)经一不可逆变化,ΔH =,则温度变化为ΔT = ,内能变化为ΔU = 。 11. 已知298K 时H 20(l)、H 20(g)和C02(g)的标准摩尔生成焓分别为、 –和mol -1,那么C(石墨)、H 2 (g)、02(g)、H 20(l)、H 20(g)和C02(g)的标准摩尔燃烧焓分别 为 。 系统 电源 电阻丝 水 电源+电阻丝 水+ 电阻丝 水+电阻丝+电源 Q = < > < = = W < > = = > = U < > > < > =

物理化学试题及答案

物理化学试题之一 一、选择题(每题2分,共50分,将唯一的答案填进括号内) 1. 下列公式中只适用于理想气体的是1. B A. ΔU=Q V B. W=nRTln(p 2/p 1)(用到了pv=nRT) C. ΔU=dT C m ,V T T 2 1? D. ΔH=ΔU+p ΔV 2. ΔH 是体系的什么 2. C A. 反应热 B. 吸收的热量 C. 焓的变化 D. 生成热 3. 2000K 时反应CO(g)+1/2O 2(g)=CO 2(g)的K p 为 6.443,则在同温度下反应为2CO 2(g)=2CO(g)+O 2(g)的K p 应为3. C A. 1/6.443 B. (6.443)1/2 C. (1/6.443)2 D. 1/(6.443)1/2 4. 固态的NH 4HS 放入一抽空的容器中,并达到化学平衡,其组分数、独立组分数、相数及自由度分别是 A. 1,1,1,2 B. 1,1,3,0 C. 3,1,2,1 D. 3,2,2,2 5. 下列各量称做化学势的是 A. i j n ,V ,S i )n ( ≠?μ? B. i j n ,V ,T i )n p (≠?? C. i j n ,p ,T i )n (≠?μ? D. i j n ,V ,S i )n U (≠?? 6. A 和B 能形成理想溶液。已知在100℃时纯液体A 的饱和蒸汽压为133.3kPa, 纯液体B 的饱和蒸汽压为66.7 kPa, 当A 和B 的二元溶液中A 的摩尔分数为0.5时,与溶液平衡的蒸气中A 的摩尔分数是 A. 1 B. 0.75 C. 0.667 D. 0.5 7. 理想气体的真空自由膨胀,哪个函数不变? A. ΔS=0 B. V=0 C. ΔG=0 D. ΔH=0 7. D ( ) 8. A 、B 两组分的气液平衡T-x 图上,有一最低恒沸点,恒沸物组成为x A =0.7。现有一组成为x A =0.5的AB 液体混合物,将其精馏可得到 A. 纯A 和恒沸混合物 B. 纯B 和恒沸混合物 C. 只得恒沸混合物 D. 得纯A 和纯B 8. B

初中物理化学知识点总结.doc

化学知识点的归纳总结。 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学之三 1、我国古代三大化学工艺:造纸,制火药,烧瓷器。 2、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。 3、构成物质的三种微粒:分子,原子,离子。 4、不带电的三种微粒:分子,原子,中子。 5、物质组成与构成的三种说法: (1)、二氧化碳是由碳元素和氧元素组成的; (2)、二氧化碳是由二氧化碳分子构成的; (3)、一个二氧化碳分子是由一个碳原子和一个氧原子构成的。 6、构成原子的三种微粒:质子,中子,电子。 7、造成水污染的三种原因: (1)工业“三废”任意排放, (2)生活污水任意排放 (3)农药化肥任意施放 8、收集方法的三种方法:排水法(不容于水的气体),向上排空气法(密度 比空气大的气体),向下排空气法(密度比空气小的气体)。

物理化学习题及答案

一、单选题(每题2分,共30分) 1. 在298K及101.325KPa下的1.00dm3氢气,等温可逆膨胀到 2.00 dm3,所做功的绝对值为C A、0.418 J B、0.0418 J C、70.3J D、7.11J 2. 对于孤立体系的实际过程,下列关系式不正确的是D A、W=0 B、Q=0 C、△U=0 D、△H=0 3. 一封闭系统进行可逆循环,其热温商之和D A、总是正值 B、总是负值 C、是温度的函数 D、总为零 4. 液体A和B混合成实际溶液时,当A和B之间的作用力大于相同分子之间的作用力时,该溶液对拉乌尔定律将 B A、产生正偏差 B、产生负偏差 C、不产生偏差 D、无法确定 5. 关于偏摩尔量,下面的叙述不正确的是B A、偏摩尔量是状态函数,其值与物质的量无关 B、偏摩尔量的值不能小于零 C、体系的强度性质无偏摩尔量 D、纯物质的偏摩尔量等于摩尔量 6.克拉贝龙方程dP/dT=△H m(相变)/T△Vm(相变),其应用条件是D A、只适用于纯物质的气液、气固平衡 B、只适用于服从理想气体行为的为气液、气固平衡 C、任何纯物质的相变热不随温度而变的两相平衡 D、任何纯物质两相平衡体系 7.含KNO3和NaCl的水溶液与纯水达到渗透平衡,其自由度数f为D A、1 B、2 C、3 D、4 8.分解反应A(s)=B(g)+2C(g) 该反应的平衡常数Kp与分解压力P的数值之间为 C A、Kp=P3 B、Kp>P3 C、KpP凹>P凸 B、P凸>P平>P凹

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

物理化学知识点(全)

第二章 热力学第一定律 内容摘要 ?热力学第一定律表述 ?热力学第一定律在简单变化中的应用 ?热力学第一定律在相变化中的应用 ?热力学第一定律在化学变化中的应用 一、热力学第一定律表述 U Q W ?=+ d U Q W δδ=+ 适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+? 2、U 是状态函数,是广度量 W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式 2、基础公式 热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ 理想气体 ? 状态方程 pV=nRT

? 过程方程 恒温:1122p V p V = ? 恒压: 1122//V T V T = ? 恒容: 1122/ / p T p T = ? 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--= 1111 22 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程 1、 可逆相变化 Q p =n Δ 相变 H m W = -p ΔV 无气体存在: W = 0 有气体相,只需考虑气体,且视为理想气体 ΔU = n Δ 相变 H m - p ΔV 2、相变焓基础数据及相互关系 Δ 冷凝H m (T) = -Δ蒸发H m (T) Δ凝固H m (T) = -Δ熔化H m (T) Δ 凝华 H m (T) = -Δ 升华 H m (T) (有关手册提供的通常为可逆相变焓) 3、不可逆相变化 Δ 相变 H m (T 2) = Δ 相变 H m (T 1) +∫Σ(νB C p.m )dT 解题要点: 1.判断过程是否可逆; 2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤; 3.除可逆相变化,其余步骤均为简单变化计算. 4.逐步计算后加和。 四、热力学第一定律在化学变化中的应用 1、基础数据 标准摩尔生成焓 Δf H θm,B (T) (附录九) 标准摩尔燃烧焓 Δc H θ m.B (T)(附录十) 2、基本公式 ?反应进度 ξ=△ξ= △n B /νB = (n B -n B.0) /νB ?由标准摩尔生成焓计算标准摩尔反应焓 Δr H θm.B (T)= ΣνB Δf H θ m.B (T) ?由标准摩尔燃烧焓计算标准摩尔反应焓 Δr H θ m.B (T)=-Σ νB Δc H θ m.B (T) (摩尔焓---- ξ=1时的相应焓值) ?恒容反应热与恒压反应热的关系 Q p =Δr H Q v =Δr U Δr H =Δr U + RT ΣνB (g) ?Kirchhoff 公式 微分式 d Δr H θ m (T) / dT=Δr C p.m 积分式 Δr H θm (T 2) = Δr H θ m (T 1)+∫Σ(νB C p.m )dT 本章课后作业: 教材p.91-96(3、4、10、11、16、17、38、20、23、24、28、30、33、34)

《物理化学》第一章气体复习题.doc.docx

第一章练习题 一、单选题 1.理想气体状 态方程 pV=nRT 表 明了气体的 p、V、T、n、 这几个参数 之间的 定量关系,与气体种 类无关。该方程实际 上包括了三个气体定律,这三个气体 定 律是( C) A 、波义尔 定律、盖一吕 萨克定律和分 压定律

B、波义尔定 律、阿伏加德 罗定律和分体 积定律 C、阿伏加德 罗定律、盖一 吕萨克定律和 波义尔定律 D、分压定律、 分体积定律和 波义尔定律 2、在温度、容积恒定的容器中,含有A和 B 两种理想气体,这时A的分 A A。若在容器中再加入一定量的理想气体问P A 和A 的变化为: ,分体积是 V C,V 是 P (C) A、P A和V A都变人 B、P A和V A都变小 C P A不变, V A变小D、P A变小, V A不变 3、在温度 T、 容积 V 都恒定 的容器中,含

有 A 和 B 两种理想气体,它 的 物质的量、分压和分体积分别为n A P A¥和1^ P B V B,容器中的总压为 P。试判断 & 列公式屮哪个是正确 的( A ) A 、P A V= n A RT B、P A V= ( n A + n B)RT C、P A V A = n A RT D、 P B V B= n B RT 4、真实气体在 如下哪个条件下, 可以近似作为理 想气体处理( C ) A 、高温、高 压B、低温、低压C、高温、低压D、低温、高压 5、真实气体液化 的必要条件是( B ) A 、压力大于 P c

B、 温度低于T c

C、体积等于 v c D、同时升 高温度和压力 6. 在 273 K, 101.325 kPa 时,CC14(1)的 蒸气可以近似 看作为理想气 体。已 知 CC14(1)的摩尔质量为isig.mor1的,则在该条件下,CC14(1)气体的密度为(A ) A 、 6.87 g.dm-3B、dm- 3 C、 6.42 g. dm'D、 3.44 g dm-3 4.52 g.3 7、理想气体 模型的基本特 征是( D ) A 、分子不 断地作无规则 运动、它们均

物理化学考试题库及答案(5)

物理化学试题及答案 一、选择题: 1. 二组分体系恒温时.可能同时存在的最大相数为 ( ) (A) Φ=2 (B) Φ=3 (C) Φ=4 2. 在α、β两项中都含有A 和B 两种物质,当达相平衡时,下列哪种情况正确 ( ) A B A A A B A B (A ) (C) (D) (B )αααβαβββμμμμμμμμ==== 3. 在101325Pa 下,水、冰和水蒸气平衡的系统中,自由度为 ( ) (A) 0 (B) 1 (C) 2 4. 在密闭容器中有食盐饱和溶液,并且存在着从溶液中析出的细小食盐结晶, 则系统的自由度是 ( ) (A) 0 (B) 1 (C) 2 (D) 3 5. 系统是N 2和O 2两种气体的混合物时,自由度应为 ( ) (A) 1 (B) 2 (C) 3 (D) 4 6. 在101325 Pa 下,水和水蒸气呈平衡的系统,其自由度f 为 ( ) (A) 0 (B) 1 (C) 2 (D) 3 7. NH 4Cl(s)在真空容器中分解达到平衡NH 4Cl(s) → HCl(g) + NH 3(g) ( ) (A) K =3, Φ=2, f =2 (B) K =2, Φ=2, f =1 (C) K =1, Φ=2, f =1 (D) K =4, Φ=2, f =1 8. 25 ℃及标准压力下,NaCl(s)与其水溶液平衡共存 ( ) (A) K =1, Φ=2, f =1 (B) K =2, Φ=2, f =1 (C) K =2, Φ=2, f =0 (D) K =4, Φ=2, f =1 9. 已知在318 K 时纯丙酮的的蒸气压为43.063 kPa ,今测得氯仿的摩尔分数为 0.30的丙酮-氯仿二元溶液上丙酮的蒸气压为26.77 kPa ,则此溶液: ( ) (A) 为理想液体混合物 (B) 对丙酮为负偏差 (C) 对丙酮为正偏差 (D) 无法确定 10. 苯(A)与甲苯(B)形成理想混合物,当把5 mol 苯与5 mol 甲苯混合形成溶液, 这时,与溶液相平衡的蒸汽中,苯(A)的摩尔分数是: ( ) (A) y A = 0.5 (B) y A < 0.5

物理化学重点超强总结归纳

第一章热力学第一定律 1、热力学三大系统: (1)敞开系统:有物质和能量交换; (2)密闭系统:无物质交换,有能量交换; (3)隔绝系统(孤立系统):无物质和能量交换。 2、状态性质(状态函数): (1)容量性质(广度性质):如体积,质量,热容量。 数值与物质的量成正比;具有加和性。 (2)强度性质:如压力,温度,粘度,密度。 数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。 特征:往往两个容量性质之比成为系统的强度性质。 3、热力学四大平衡: (1)热平衡:没有热隔壁,系统各部分没有温度差。 (2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同 (3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。 (4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。 4、热力学第一定律的数学表达式: ?U = Q + W Q为吸收的热(+),W为得到的功(+)。

12、在通常温度下,对理想气体来说,定容摩尔热容为: 单原子分子系统 ,V m C =32 R 双原子分子(或线型分子)系统 ,V m C =52R 多原子分子(非线型)系统 ,V m C 6 32 R R == 定压摩尔热容: 单原子分子系统 ,52 p m C R = 双原子分子(或线型分子)系统 ,,p m V m C C R -=,72 p m C R = 多原子分子(非线型)系统 ,4p m C R = 可以看出: ,,p m V m C C R -= 13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经 ,2' p m c C a bT T =++ 验常数,与物质和温度范围有关) 14、在发生一绝热过程时,由于0Q δ=,于是dU W δ= 理想气体的绝热可逆过程,有:,V m nC dT pdV =- ? 22 ,11 ln ln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ?= ,,p m V m C pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T =( )H p μ??- J T μ->0 经节流膨胀后,气体温度降低; J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。 16、气体的节流膨胀为一定焓过程,即0H ?=。 17、化学反应热效应:在定压或定容条件下,当产物的温度与反应物的温度相同而在反应过程中只做体积功不做其他功时,化学反应所 吸收或放出的热,称为此过程的热效应,或“反应热”。 18、化学反应进度:()()() n B n B B ξ ν-= 末初 (对于产物v 取正值,反应物取负值) 1ξ=时,r r m U U ξ ??= ,r r m H H ξ ??= 19、(1)标准摩尔生成焓(0 r m H ?):在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热,为该物质的 标准摩尔生成焓。 (2)标准摩尔燃烧焓(0 c m H ?):在标准压力和指定温度下,单位物质的量的某种物质被氧完全氧化时的反应焓,为该物质的标 准摩尔燃烧焓。 任意一反应的反应焓0 r m H ?等于反应物燃烧焓之和减去产物燃烧焓之和。 20、反应焓与温度的关系-------基尔霍夫方程

物理化学第一章练习题

热力学第一定律练习题 一、选择题 1. 下列叙述中不具有状态函数特征的是() (A) 体系状态确定后,状态函数的值也确定 (B) 体系变化时,状态函数的改变值只由体系的始终态决定 (C) 经循环过程,状态函数的值不变(D) 状态函数均有加和性 2. 下列叙述中,不具有可逆过程特征的是() (A) 过程的每一步都接近平衡态,故进行得无限缓慢 (B) 沿原途径反向进行时,每一小步体系与环境均能复原 (C) 过程的始态与终态必定相同 (D) 过程中,若做功则做最大功,若耗功则耗最小功 3. 下列叙述中正确的是() (A) 物体温度越高,说明其内能越大 (B) 物体温度越高,说明所含热量越多 (C) 凡体系温度升高,就肯定是它吸收了热 (D) 凡体系温度不变,说明它既不吸热也不放热 4. 下列四种理想气体物质的量相等,若都以温度为T1恒容加热到T2,则吸热量最少的气体是() (A) He (B) H2(C) CO2(D) SO3 5. 将H2(g)与O2(g)以2:1的比例在绝热刚性密闭容器中完全反应,则该过程中应有() (A) △T=0 (B) △p=0 (C) △U=0 (D) △H=0 6. 下列关于焓的描述中,正确的是() (A) 因为△H=Q p,所以焓就是恒压热 (B) 气体的焓只是温度的函数 (C) 气体在节流膨胀中,它的焓不改变 (D) 因为△H=△U+△(pV),所以任何过程都有△H>0的结论 7. 理想气体卡诺循环的图为下列四种情况中的哪几种? 8. 下述哪一种说法错误? (A) 焓是定义的一种具有能量量纲的热力学量(B) 只有在某些特定条件下,焓变ΔH才与体系吸热相等 (C) 焓是状态函数(D) 焓是体系能与环境能进行热交换的能量 9. 1 mol 373 K,pθ下的水经两个不同过程变成373 K,pθ下的水气:(1) 等温等压可逆蒸发,(2) 真空蒸发。 这两个过程中功和热的关系为: (A) -W1> W2Q1> Q2(B) W1< W2Q1< Q2(C) W1= W2Q1= Q2(D) W1> W2Q1< Q2 10. 已知:Zn(s)+(1/2)O2→ZnO,Δc H m=351.5 kJ·mol-1;Hg(l)+(1/2)O2→HgO,Δc H m= 90.8 kJ·mol-1。因此, Zn+HgO→ZnO+Hg的Δr H m是: (A) 442.2 kJ·mol-1(B) 260.7 kJ·mol-1(C) -62.3 kJ·mol-1(D) -442.2 kJ·mol-1 11. ΔH=Q p,此式适用于下列那个过程: (A) 理想气体从1 013 250 Pa反抗恒定的外压101 325 Pa膨胀到101 325 Pa (B) 0℃, 101 325 Pa 下冰融化成水 (C) 气体从(298 K,101 325 Pa) 可逆变化到(373 K,10 132.5 Pa) (D) 电解CuSO4水溶液

物理化学上册知识点总结

1 第一章:气体 1、掌握理想气体的状态方程( )及分压力、分体积等概念,会进行简单计算 2、理解真实气体与理想气体的偏差及原因,了解压缩因子Z 的定义及数值大小的意义,熟悉范德华方程(理想气体基础上引入压力、体积修正项) 第二章:热力学第二定律;第三章:热力学第三定律 1、系统性质(广度、强度性质) 2、状态函数特性(如:异途同归,值变相等;周而复始,数值还原及在数学上具有全微分的性质等) 3、热力学第一定律:ΔU =Q+W (Q 、W 取号的规定及各种过程对应计算) 4、恒容热、恒压热及之间的关系式,能进行简单计算,掌握焓的定义式,会应用赫斯定律 5、掌握各种不同过程的热力学函数计算(单纯PVT 变化时自由膨胀、等温、等压、等容及绝热可逆或不可逆等过程的U 、H 、A 、G 、S 等函变以及正常、非正常相变过程焓变、吉布斯函变和熵变计算(状态函数法) 6、理解理想气体的一些性质(如U 、H 仅为温度函数、Cp 与Cv 的差值及单原子、双原子理想气体的C V ,m 和绝热可逆过程过程方程式等)、实际气体—节流膨胀过程(等焓过程,了解焦-汤系数等) 7、反应进度 8、如何由标准摩尔生成焓、燃烧焓计算标准摩尔反应焓变以及相关规定 9、反应焓变与温度的关系(基尔霍夫定律) 10、自发过程及其共同特征;热力学第二定律文字描述 11、卡诺循环、卡诺定理、热机效率;熵的定义式及克劳修斯不等式 12、判断过程可逆性及自发变化方向的各种判据 13、了解热力学第三定律,掌握根据规定熵、标准摩尔生成焓、标准摩尔生成吉布斯函变计算化学变化过程中对应函数的变化值 14、热力学函数间的关系及麦克斯韦关系式的应用(应用于各函数间的相互计算以及一些证明),了解各函数特征变量 15、了解Clapeyron 方程,掌握Clausius-Clapeyron 方程各种形式 第四章:多组分系统热力学及其在溶液中的应用 1、 熟悉偏摩尔量、化学势表示,了解偏摩尔量加和公式和吉布斯-杜亥姆公式,掌握相平衡、 化学平衡条件 2、 了解各种不同情况化学势的表达式,假想标准态等概念 3、 掌握稀溶液中两个经验定律:拉乌尔、亨利定律表达式及简单计算 4、 掌握理想液态混合物的通性 5、了解依数性的一些结论 第五章:化学平衡 1、会表示任意化学反应的标准平衡常数、其它各种平衡常数,并能相互换算 2、熟悉化学反应等温方程,并能应用其判断反应方向 3、掌握范特霍夫方程各种形式并进行相关计算 4、了解温度、压力等各种因素对化学平衡影响的相关结论 5、掌握使用标准平衡常数定义式以及热力学相关公式进算平衡组成的计算。 第六章:相平衡(相图分析) 1、掌握相律的形式并会计算其中各个量 2、杠杆规则、对拉乌尔定律发生正负偏差,从而相图上出现最高、最低点、恒沸混合物、蒸馏或精馏基本原理等(完全互溶双液系) 4、、能看懂相图并会使用相律分析相图,并绘制步冷曲线(如较复杂的低共熔二元相图、形成化合物系统及固态部分互溶的二组分相图) pV nRT

物理化学期末考试试题库-2017(附答案与解析)汇总

物理化学期末考试试题库-2017(附答案与解析)汇总 1 / 7 第一章 热力学第一定律 选择题 1.关于焓的性质, 下列说法中正确的是( ) (A) 焓是系统内含的热能, 所以常称它为热焓 (B) 焓是能量, 它遵守热力学第一定律 (C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关 答案:D 。因焓是状态函数。 2.涉及焓的下列说法中正确的是( ) (A) 单质的焓值均等于零 (B) 在等温过程中焓变为零 (C) 在绝热可逆过程中焓变为零 (D) 化学反应中系统的焓变不一定大于内能变化 答案:D 。因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH <ΔU 。 3.与物质的生成热有关的下列表述中不正确的是( ) (A) 标准状态下单质的生成热都规定为零 (B) 化合物的生成热一定不为零 (C) 很多物质的生成热都不能用实验直接测量 (D) 通常所使用的物质的标准生成热数据实际上都是相对值 答案:A 。按规定,标准态下最稳定单质的生成热为零。 4.下面的说法符合热力学第一定律的是( ) (A) 在一完全绝热且边界为刚性的密闭容器中发生化学反应时,其内能一定变化 (B) 在无功过程中, 内能变化等于过程热, 这表明内能增量不一定与热力学过程无关 (C) 封闭系统在指定的两个平衡态之间经历绝热变化时, 系统所做的功与途径无关 (D) 气体在绝热膨胀或绝热压缩过程中, 其内能的变化值与过程完成的方式无关 答案:C 。因绝热时ΔU =Q +W =W 。(A )中无热交换、无体积功故ΔU =Q +W =0。(B )在无功过程中ΔU =Q ,说明始末态相同热有定值,并不说明内能的变化与过程有关。(D )中若气体绝热可逆膨胀与绝热不可逆膨胀所做的功显然是不同的,故ΔU 亦是不同的。这与内能为状态函数的性质并不矛盾,因从同一始态出发,经绝热可逆膨胀与绝热不可逆膨胀不可能到达同一终态。 5.关于节流膨胀, 下列说法正确的是 (A) 节流膨胀是绝热可逆过程(B)节流膨胀中系统的内能变化(C)节流膨胀中系统的焓值改变(D)节流过程中多孔 塞两边的压力不断变化 答案:B 6.在实际气体的节流膨胀过程中,哪一组描述是正确的: (A )Q >0, H =0, p < 0 (B )Q =0, H <0, p >0 (C )Q =0, H =0, p <0 (D )Q <0, H =0, p <0 答案:C 。节流膨胀过程恒焓绝热且压力降低。 7.系统经一个循环后,ΔH 、ΔU 、Q 、W 是否皆等于零? 答:否。其中H 和U 为状态函数,系统恢复至原态后其值复原,即ΔH =0、ΔU =0。而热与功是与途径有关的函数,一般不会正好抵消而复原,除非在特定条件下,例如可逆绝热膨胀后又可逆绝热压缩回至原态,或可逆恒温膨胀后又可逆恒温压缩回至原态等。 1. 在温度T 、容积V 都恒定的容器中,含有A 和B 两种理想气体,它们的物质的量、分压和分体积分别为nA , pA ,V A 和nB ,pB ,VB ,设容器中的总压为p 。试判断下列公式中哪个是正确的( )。 (A )A A p V n RT = (B )B A B ()pV n n RT =+ (C )A A A p V n RT = (D )B B B p V n RT = 答:(A )只有(A )符合Dalton 分压定律。 4. 真实气体液化的必要条件是( )。 (A )压力大于 C p (B )温度低于C T (C )体积等于 m,C V (D )同时升高温度和压力 答:(B )C T 是能使气体液化的最高温度,温度再高无论加多大压力都无法使气体液化。

物理化学期末考试试题库-2017(附答案与解析)汇总

。 -可编辑修改- 第一章 热力学第一定律 选择题 1.关于焓的性质, 下列说法中正确的是( ) (A) 焓是系统内含的热能, 所以常称它为热焓 (B) 焓是能量, 它遵守热力学第一定律 (C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关 答案:D 。因焓是状态函数。 2.涉及焓的下列说法中正确的是( ) (A) 单质的焓值均等于零 (B) 在等温过程中焓变为零 (C) 在绝热可逆过程中焓变为零 (D) 化学反应中系统的焓变不一定大于内能变化 答案:D 。因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH <ΔU 。 3.与物质的生成热有关的下列表述中不正确的是( ) (A) 标准状态下单质的生成热都规定为零 (B) 化合物的生成热一定不为零 (C) 很多物质的生成热都不能用实验直接测量 (D) 通常所使用的物质的标准生成热数据实际上都是相对值 答案:A 。按规定,标准态下最稳定单质的生成热为零。 4.下面的说法符合热力学第一定律的是( ) (A) 在一完全绝热且边界为刚性的密闭容器中发生化学反应时,其内能一定变化 (B) 在无功过程中, 内能变化等于过程热, 这表明内能增量不一定与热力学过程无关 (C) 封闭系统在指定的两个平衡态之间经历绝热变化时, 系统所做的功与途径无关 (D) 气体在绝热膨胀或绝热压缩过程中, 其内能的变化值与过程完成的方式无关 答案:C 。因绝热时ΔU =Q +W =W 。(A )中无热交换、无体积功故ΔU =Q +W =0。(B )在无功过程中ΔU =Q ,说明始末态相同热有定值,并不说明内能的变化与过程有关。(D )中若气体绝热可逆膨胀与绝热不可逆膨胀所做的功显然是不同的,故ΔU 亦是不同的。这与内能为状态函数的性质并不矛盾,因从同一始态出发,经绝热可逆膨胀与绝热不可逆膨胀不可能到达同一终态。 5.关于节流膨胀, 下列说法正确的是 (A) 节流膨胀是绝热可逆过程(B)节流膨胀中系统的内能变化(C)节流膨胀中系统的焓值改变(D)节流过程中多孔

物理化学知识点归纳77421

110112班期末物理化学知识点归纳 预祝大家物化期末考试取得好成绩! ——孔祥鑫 2012年5月27日第二章热力学第一定律 一、热力学基本概念 1.状态函数 状态函数,是指状态所持有的、描述系统状态的宏观物理量,也称为状态性质或状态变量.系统有确定的状态,状态函数就有定值;系统始、终态确定后,状态函数的改变为定值;系统恢复原来状态,状态函数亦恢复到原值。 2.热力学平衡态 在指定外界条件下,无论系统与环境是否完全隔离,系统各个相的宏观性质均不随时间发生变化,则称系统处于热力学平衡态。热力学平衡须同时满足平衡(△T=0)、力平衡(△p=0)、相平衡(△μ=0)和化学平衡(△G=0)4个条件。 二、热力学第一定律的数学表达式 1。△U=Q+W 或dU=ΔQ+δW=δQ-p amb dV+δW` 规定系统吸热为正,放热为负。系统得功为正,对环境做功为负。式中p amb为环境的压力,W`为非体积功。上式适用于封闭系统的一切过

程。 2.体积功的定义和计算 系统体积的变化而引起的系统和环境交换的功称为体积功。其定义式为: δW=—p amb dV (1)气体向真空膨胀时体积功所的计算 W=0 (2)恒外压过程体积功 W=p amb(V1—V2)=—p amb△V 对于理想气体恒压变温过程 W=-p△V=—nR△T (3)可逆过程体积功 W r=?2 1p V V dV (4)理想气体恒温可逆过程体积功 W r=?2 1p V V dV=—nRTln(V1/V2)=—nRTln(p1/p2)(5)可逆相变体积功 W=—pdV 三、恒热容、恒压热,焓 1。焓的定义式 H def U + p V 2.焓变

大学物理化学知识点归纳

第一章气体的pvT关系 一、理想气体状态方程 pV=(m/M)RT=nRT (1.1) 或pV m =p(V/n)=RT (1.2) 式中p、V、T及n的单位分别为 P a 、m3、K及mol。V m =V/n称为气 体的摩尔体积,其单位为m3·mol。R=8.314510J·mol-1·K-1称为摩尔气体常数。 此式适用于理想,近似于地适用于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程(1.3) pV=nRT=(∑ B B n)RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑ B B y M B (1.5) M mix =m/n=∑ B B m/∑ B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种 混合气体,也适用于液态或固态等均 匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑ B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气 体的温度T及总体积V的条件下所具 有的压力。而混合气体的总压即等于 各组分单独存在于混合气体的温度、 体积条件下产生压力的总和。以上两 式适用于理想气体混合系统,也近似 适用于低压混合系统。

3.阿马加定律 V B *=n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把 这个温度称为临界温度,以T c 或t c 表 示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积 称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an2/V2)(V-nb)=nRT (1.12) 上述两式中的a和b可视为仅与 气体种类有关而与温度无关的常数, 称为范德华常数。a的单位为Pa·m 6·mol,b的单位是m3mol.-1。该方 程适用于几个兆帕气压范围内实际气 体p、V、T的计算。 2.维里方程 Z(p,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C / V m 2 +D/ V m 3 +… (1.14)

相关主题
文本预览
相关文档 最新文档