当前位置:文档之家› 127_基于有限元分析的螺栓连接松紧情况判据及实例分析

127_基于有限元分析的螺栓连接松紧情况判据及实例分析

127_基于有限元分析的螺栓连接松紧情况判据及实例分析
127_基于有限元分析的螺栓连接松紧情况判据及实例分析

螺纹连接重要习题.(汇编)

《螺纹连接练习题》 一、单选题(每题1分) 1. 采用凸台或沉头座其目的为。 A 便于放置垫圈 B 避免螺栓受弯曲力矩 C 减少支承面的挤压应力 D 增加支承面的挤压应力 2. 联接螺纹要求自锁性好,传动螺纹要求。 A 平稳性 B 效率高 C 螺距大 D 螺距小 3. 连接用的螺纹,必须满足条件。 A 不自锁 B 传力 C 自锁 D 传递扭矩 4. 单线螺纹的螺距导程。 A 等于 B 大于 C 小于 D 与导程无关 5. 同一螺栓组的螺栓即使受力不同,一般应采用相同的材料和尺寸,其原因是。 A 便于装配 B 为了外形美观 C 使结合面受力均

匀 D 减少摩损 6. 用于联接的螺纹,其牙形为。 A 矩形 B 三角形 C 锯齿形 D 梯形 7. 螺纹的标准是以为准。 A 大径 B 中径 C 小径 D 直径 8. 螺纹的危险截面应在上。 A 大径 B 小径 C 中径 D 直径 9、在常用的螺旋传动中,传动效率最高的螺纹是__________。A三角形螺纹B梯形螺纹C锯齿形螺纹D矩形螺纹 10、在常用的螺纹联接中,自锁性能最好的螺纹是__________。A三角形螺纹B梯形螺纹C锯齿形螺纹D矩形螺纹 11、当两个被联接件不太厚时,宜采用__________。 A双头螺柱联接B螺栓联接C螺钉联接D紧定螺钉联接12、当两个被联接件之一太厚,不宜制成通孔,且需要经常拆装时,往往采用__________。

A螺栓联接B螺钉联接C双头螺柱联接D紧定螺钉联接13、当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常拆装时,往往采用__________。 A螺栓联接B螺钉联接C双头螺柱联接D紧定螺钉联接14、普通螺纹的牙型角α为60o,当摩擦系数μ=0.10时,则该螺纹副的当量摩擦系数μv=__________。 A0.105 B 0.115 C 0.1115 D 0.104 15、在拧紧螺栓联接时,控制拧紧力矩有很大方法,例如__________。 A增加拧紧力B增加扳手力臂C使用测力矩扳手或定力矩扳手 16、螺纹联接防松的根本问题在于__________。 A增加螺纹联接的轴向力B增加螺纹联接的横向力 C防止螺纹副的相对转动D增加螺纹联接的刚度17、螺纹联接预紧的目的之一是__________。

螺栓连接的有限元分析(汇编)

1 概述 螺栓是机载设备设计中常用的联接件之一。其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件MSC.Patran/MSC.Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图1所示组合装配体,底部约束。两圆筒连接法兰通过8颗螺栓固定。端面受联合载荷作用。

案例一螺栓失效分析

案例一螺栓断裂失效分析 某螺栓生产厂家生产的螺栓在用户使用过程中发生断裂,为分析螺栓断裂原因,进行了化学成分测试、金相组织观察、螺栓断口观察、能谱测试以及硬度测试等,并对螺栓断裂做出了结论。 1、化学成分分析 螺栓成分分析采用成分分析仪,正常断裂、异常断裂螺栓成分见表1,从表中可以看出正常断裂螺栓与异常断裂螺栓成分都符合GB/T3077-1999《合金结构钢》中对45Mn2钢的要求。 表1 材料化学成分分析结果(质量分数,%) C Si Mn P S Cr Ni Fe 正常断裂螺栓0.421 0.250 1.498 0.011 0.001 0.078 0.021 余量 异常断裂螺栓0.425 0.269 1.534 0.011 <0.001 0.068 0.019 余量标准值0.42~0.49 0.17~0.37 1.4~1.8 2、金相组织分析 取平行于断裂截面的试样,打磨、抛光并观察其组织形貌。下图1(a)、1(b)所示为正常断裂螺栓与异常断裂螺栓的金相组织形貌,从图中可以看出螺栓金相组织均为回火马氏体。 (a)正常断裂螺栓;(b)异常断裂螺栓 图1 螺栓金相组织形貌 3、宏观断口形貌分析 正常断裂螺栓、异常断裂螺栓宏观断口形貌如图2(a)、2(b)所示。由图可知

两个螺栓均从中心起裂,裂纹向四周扩展。正常断裂螺栓与异常断裂螺栓断裂截面都具有裂纹源、扩展区、瞬断区三个部分,正常断裂螺栓扩展区面积比异常断裂螺栓大,瞬断区面积则比异常断裂螺栓小。这与异常断裂螺栓应力(165KN )比正常断裂螺栓断裂应力(215KN)小相吻合。同时正常断裂螺栓断裂截面较为平整,异常断裂螺栓在裂纹源附近呈凹陷状。 (a)正常断裂螺栓; (b)异常断裂螺栓 图2 螺栓断裂截面 4、 微观断口形貌分析 图3所示为正常断裂螺栓与异常断裂螺栓断裂截面裂纹源附近的微观形貌,从图中可以看出正常断裂螺栓组织较为平整,而异常断裂螺栓中心附近可见含有夹杂物的微孔。图4所示为夹杂物所在位置,图5为夹杂物能谱分析图,表2为其对应的元素分析表,从表中可以看出夹杂物中主要元素为O 、Si ,并存在少量的Mg 、Al 、Ca 元素,其中O 元素的含量很大,故较杂物主要为SiO 2,存在少量的MgO 、Al 2O 3、CaO 。 裂纹源 扩展区 裂纹源 扩展区 瞬断区 瞬断区 a) b)

螺栓连接的有限元分析

1 概述螺栓是机载设备设计中常用的联接件之一。其具有结构简单, 拆装方便,调整容易等优点, 被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节( 如应力集中、应力分布) 等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件 MSC.Patran/MSC.Nastran 提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent) ,另外一个节点为主节点(Independent) 。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1, 使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图 1 所示组合装配体,底部约束。两圆筒连接法兰通过8 颗螺栓固定。端面受联合载荷作用。

螺纹连接习题解答(讲解)全解

螺纹连接习题解答 11—1 一牵曳钩用2个M10的普通螺钉固定于机体上, 如图所示。已知接合面间的摩擦系数 f=0.15,螺栓材料为Q235、强度级别为4.6 级,装配时控制预紧力,试求螺栓组连接 允许的最大牵引力。 解题分析:本题是螺栓组受横向载荷作用的典型 例子.它是靠普通螺栓拧紧后在接合面间产生的摩擦力来传递横向外载荷F R。解题时,要先求出螺栓组所受的预紧力,然后,以连接的接合面不滑移作为计算准则,根据接合面的静力平衡条件反推出外载荷F R。 解题要点: (1)求预紧力F′: 由螺栓强度级别4.6级知σS =240MPa,查教材表11—5(a),取S=1.35,则许用拉应力: [σ]= σS/S =240/1.35 MPa=178 MPa ,查(GB196—86)M10螺纹小径d1=8.376mm 由教材式(11—13): 1.3F′/(πd21/4)≤[σ] MPa 得: /(4×1.3)=178 ×π×8.3762/5.2 N F′=[σ]πd2 1 =7535 N (2)求牵引力F R: =7535×0.15×2×由式(11—25)得F R=F′fzm/K f

1/1.2N=1883.8 N (取K =1.2) f 11—2 一刚性凸缘联轴器用6个M10的铰制孔用螺栓(螺栓 GB27—88)连接,结构尺寸如图所示。两半联轴器材料为HT200,螺栓材料为Q235、性能等级5.6级。试求:(1)该螺栓组连接允许传递的最大转矩T max。(2)若传递的最大转矩T max不变,改用普通螺栓连接,试计算螺栓直径,并确定其公称长度,写出螺栓标记。(设两半联轴器间的摩擦系数f=0.16,可靠性系数K f=1.2)。 解题要点: (1)计算螺栓组连接允许传递的最大 转矩T max: 该铰制孔用精制螺栓连接所能传递 转矩大小受螺栓剪切强度和配合面 挤压强度的制约。因此,可先按螺栓剪 切强度来计算T max,然后较核配合面挤 压强度。也可按螺栓剪切强度和配合面挤压强度分别求出T max,取其值小者。本解按第一种方法计算 1)确定铰制孔用螺栓许用应力 由螺栓材料Q235、性能等级 5.6级知: σs300MPa 被连接件材料HT200 = σb500MPa、= = σb200MPa 。 (a)确定许用剪应力

第八章(焊缝、螺栓连接)--钢结构习题参考解答

8.4 有一工字形钢梁,采用I50a (Q235钢),承受荷载如图8-83所示。F=125kN ,因长度不够而用对接坡口焊缝连接。焊条采用E43型,手工焊,焊缝质量属Ⅱ级,对接焊缝抗拉强度设计值2205/w t f N mm =,抗剪强度设计值2120/w v f N mm =。验算此焊缝受力时是否安全。 图8-83 习题8.4 解: 依题意知焊缝截面特性: A=119.25cm 2,Wx =1858.9cm 3,Ix=46472cm 4,Sx=1084.1cm 3 ,截面高度h=50cm ,截面宽度b=158mm ,翼缘厚t=20mm ,腹板厚tw=12.0mm 。 假定忽略腹板与翼缘的圆角,计算得到翼缘与腹板交点处的面积矩S 1=20×158×(250-10) =7.584×105mm 3 。 对接焊缝受力:125V F kN ==;2250M F kN m =?=? 焊缝应力验算: 最大正应力:622 3 25010134.5/205/1858.910w t x M N mm f N mm W σ?===<=? 最大剪应力:33 224125101084.11024.3/120/464721012 w x v x w VS N mm f N mm I t τ???===<=?? 折算应力: 22127.2/205/w zs t N mm f N mm σ=<= 故焊缝满足要求。 8.5 图8-84所示的牛腿用角焊缝与柱连接。钢材为Q235钢,焊条用E43型,手工焊,角焊缝强度设计值2f 160/w f N mm =。T=350kN ,验算焊缝的受力。

螺纹联接练习题

连接 一、判断 01. 一个双线螺纹副,螺距为4mm,则螺杆相对螺母转过一圈时,它们沿轴向相对移动的距离应为4mm。( ) 02. 三角形螺纹由于当量摩擦系数大,强度高,所以是常用的连接螺纹。( ) 03. 设计外载荷是轴向变载荷的紧螺栓连接,除考虑螺栓的静强度外,还必须验算其疲劳强度。 ( ) 04. 普通螺栓连接的强度计算,主要是计算螺栓的剪切强度。( ) 05. 对受轴向变载荷的普通螺栓连接适当增加预紧力可以提高螺栓的抗疲劳强度。( ) 06. 受横向载荷的螺栓组连接中的螺栓必须采用有铰制孔的精配合螺栓。( ) 07. 受轴向载荷的紧螺栓连接的螺栓所受的总拉力是预紧力与工作拉力之和。( ) 08. 在受轴向变载荷的紧螺栓连接中,使用柔性螺栓,其主要作用是降低螺栓的应力幅。( ) 09. 受翻转(倾覆)力矩作用的螺栓组连接中,螺栓的位置应尽量远离接合面的几何形心。( ) 10. 在受轴向变载荷的紧螺栓连接结构中,在两个被连接件之间加入橡胶垫片,可以提高螺栓疲劳强度。( ) 二、选择 1.常见的连接螺纹是_________。 A.左旋单线 B.右旋双线 C.右旋单线 D.左旋双线 2. 相同公称尺寸的三角形细牙螺纹和粗牙螺纹相比,因细牙螺纹的螺距小,小径大,故细牙螺纹的_______。 A.自锁性好,钉杆受拉强度低 B.自锁性好,钉杆受拉强度高 C.自锁性差,钉杆受拉强度高 D.自锁性差,钉杆受拉强度低 (强度——指螺纹杆的承载能力。) 3. 用作调节或阻塞的螺纹,应采用_____。 A.三角形粗牙螺纹 B.矩形螺纹 C.锯齿形螺纹 D.三角形细牙螺纹 4. 标注螺纹时______。 A.右旋螺纹不必注明 B.左旋螺纹不必注明 C.左、右旋螺纹都必须注明 D.左、右旋螺纹都不必注明 5. 连接用的螺母、垫圈的尺寸(型号)是根据螺栓的______选用的。A.中径d2 B.小径d1 C.大 径d D.钉杆直径 6. 管螺纹的公称直径是指______。 A.螺纹的外径 B.螺纹的内径 C.螺纹的中径 D.管子的内径 三、填空 1. 普通螺栓的公称直径为螺纹______径。

螺栓失效分析

失效分析概述 在具体讲述螺纹紧固件失效分析案例以前,先对失效分析的定义、意义、目的;失效的来源;失效分析的思路与方法;断口分析和名词术语等做一简单叙述。 1.失效定义 一个零件或部件不能履行设计赋予它规定的功能,称该零件或部件失效。它包括以下三内容: a.完全不能工作; b.可以工作,但不能令人满意地完成预期的功能; c.受到严重损伤不能可靠而安全的连续使用,必须拆下来进行修理或更换。应注意把失效与废品区别开来,前者是在使用过程中出现的,后者是在生产制造过程中产生的。另外,失效又分为正常失效和非正常失效,达到设计寿命的为正常失效,反之为非正常失效,后者才是通常失效分析工作的主要对象。 2.失效分析的意义、目的 机械产品设计者的主要任务,是为社会提提供质量好、寿命长、成本低的产品。一种新产品的诞生,开始并不是完美的,多少会存在各种大小不同的问题,这在设计、制造中可能难以发现,往往只有在使用中才能充分暴露。为此,设计、制造者必须针对产品使用中出现的失效进行仔细分析,找出问题的症结,重新改进设计、制造。再投入使用,发现问题,再改进,这个循环过程也许要反复进行多次。因此,失效分析是机械差品的质量由不完善走向完善的必经之路,是机械产品可靠性设计重要的一环。最近一些年来,委托我们进行失效分析的任务越来越多,这是好事,这并不反应产品质量越来越差,而恰恰反应了生产者、客户对产品高质量的追求。 3.失效的来源 造成失效的来源主要有以下方面: ——设计 ——选材 ——材料缺陷 ——制造工艺(冷加工、热加工、表面处理等等) ——贮存、运输(碰撞、锈蚀…) ——装配(如螺栓拧紧力矩…) ——服役条件(环境温度、受力状态、腐蚀环境、相关件的影响等) 4.失效分析的思路、方法 失效分析也有繁、简之分。一些零部件的失效在现场很快能确定失效原因这是简单的。但是对一些大型零部件(如飞机、电站转子…),一些复杂且影响因素很多的零部件的失效分析,则必须组织多专业的科技人员,动用一些专用的检测仪器设备。 进行失效分析时,要做的工作包括(根据分析工作的难易来取舍): ( 1收集背景资料:失效件的设计图纸、要求;失效件的制造历史;失效件的服役情况、环境、

螺栓联接习题及解答

习题与参考答案 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 当螺纹公称直径、牙型角、螺纹线数相同时,细牙螺纹的自锁性能比粗牙螺纹的自锁性能。 A. 好 B. 差 C. 相同 D. 不一定 2 用于连接的螺纹牙型为三角形,这是因为三角形螺纹。 A. 牙根强度高,自锁性能好 B. 传动效率高 C. 防振性能好 D. 自锁性能差 3 若螺纹的直径和螺旋副的摩擦系数一定,则拧紧螺母时的效率取决于螺纹的。 A. 螺距和牙型角 B. 升角和头数 C. 导程和牙形斜角 D. 螺距和升角 4 对于连接用螺纹,主要要求连接可靠,自锁性能好,故常选用。 A. 升角小,单线三角形螺纹 B. 升角大,双线三角形螺纹 C. 升角小,单线梯形螺纹 D. 升角大,双线矩形螺纹 5 用于薄壁零件连接的螺纹,应采用。 A. 三角形细牙螺纹 B. 梯形螺纹 C. 锯齿形螺纹 D. 多线的三角形粗牙螺纹 6 当铰制孔用螺栓组连接承受横向载荷或旋转力矩时,该螺栓组中的螺栓。 A. 必受剪切力作用 B. 必受拉力作用 C. 同时受到剪切与拉伸 D. 既可能受剪切,也可能受挤压作用 7 计算紧螺栓连接的拉伸强度时,考虑到拉伸与扭转的复合作用,应将拉伸载荷增加到原来的 倍。 A. 1.1 B. 1.3 C. 1.25 D. 0.3 8 采用普通螺栓连接的凸缘联轴器,在传递转矩时,。 A. 螺栓的横截面受剪切 B. 螺栓与螺栓孔配合面受挤压 C. 螺栓同时受剪切与挤压 D. 螺栓受拉伸与扭转作用 9 在下列四种具有相同公称直径和螺距,并采用相同配对材料的传动螺旋副中,传动效率最高的是。 A. 单线矩形螺旋副 B. 单线梯形螺旋副 C. 双线矩形螺旋副 D. 双线梯形螺旋副 10 在螺栓连接中,有时在一个螺栓上采用双螺母,其目的是。 A. 提高强度 B. 提高刚度 C. 防松 D. 减小每圈螺纹牙上的受力 11 在同一螺栓组中,螺栓的材料、直径和长度均应相同,这是为了。 A. 受力均匀 B. 便于装配. C. 外形美观 D. 降低成本

高强度螺栓失效分析与探讨

水电厂高强度螺栓失效分析与探讨 杨兴乾赵少勇 摘要:高强度螺栓在水电厂运用十分重要,2009年8月俄罗斯萨扬·舒申斯克水电站水轮机顶盖固定螺栓疲劳断裂造成的后果给了我们深刻教训。2013年3月思林发电厂#1机组A修时,我厂接力器基础螺栓进行超声波探伤检测时发现两颗存在缺陷的螺栓,以此为实例,我厂金属监督对螺栓失效进行了深入的分析和探讨,归纳其常见的失效形式,即材质缺陷、过载失效、应力腐蚀、及疲劳性能失效,同时提出相应的监督措施。 关键词:水电厂;螺栓;失效;强度 一、前言 螺栓是水电厂机组的重要部件,在制造过程中由于螺栓本身的材质及控制工艺过程不当,螺栓在长期的承受应力作用下会发生缓慢的、连续的塑性变形,从而使螺栓容易出现裂纹,高强度螺栓指的是强度达8.8级及以上的螺栓,一般用于水电厂和其他重要的螺栓。同时各种结构的螺栓种类繁多,规格也各不相同,但均使用了不少的高强度螺栓。对于我厂而言,高强度螺栓作为机组转动部件的连接部件和密封部件是最为常用的。 2009年8月俄罗斯萨扬·舒申斯克水电站机组长期振动超标引发水轮机顶盖固定螺栓疲劳断裂,导致发生了水电史上空前的特大事故,引起水电界金属同行的高度关注。在此基础上结合我厂的实际情况及此次出现的接力器基础螺栓探伤检测的缺陷,本文以我厂高强螺栓存在缺陷的失效案例,对其常见的缺陷进行归类分析,以此来为同行进行交流和学习。 二、我厂接力器基础螺栓缺陷介绍 我厂#1机组A修期间,在对接力器基础的高强度螺栓进行超声波探伤检测时出现了两颗存在缺陷的螺栓,该螺栓规格型号为:M42x283mm,此螺栓在我厂投产至今已服役五年,在机组的不同检修类别中都要对相应的金属监督部件进行探伤检测,此次发现接力器基础螺栓存在的缺陷引起了我厂金属监督的深刻反思和探讨,同时也为我厂的安全经济稳定运行打了预防针。针对我厂各部件重要螺栓的制造、安装、运行过程中存在的问题,提出关于螺栓的质量监督,确保设备的安全稳定运行。以此来增强我们防范于未然的决心。接力器基础螺栓探伤检测报告详见下表:

螺纹连接重要习题

一、单选题(每题1分) 1. 采用凸台或沉头座其目的为。 A 便于放置垫圈 B 避免螺栓受弯曲力矩 C 减少支承面的挤压应力 D 增加支承面的挤压应力 2. 联接螺纹要求自锁性好,传动螺纹要求。 A 平稳性 B 效率高 C 螺距大 D 螺距小 3. 连接用的螺纹,必须满足条件。 A 不自锁 B 传力 C 自锁 D 传递扭矩 4. 单线螺纹的螺距导程。 A 等于 B 大于 C 小于 D 与导程无关 5. 同一螺栓组的螺栓即使受力不同,一般应采用相同的材料和尺寸,其原因是。 A 便于装配 B 为了外形美观 C 使结合面受力均匀 D 减少摩损 6. 用于联接的螺纹,其牙形为。 A 矩形 B 三角形 C 锯齿形 D 梯形 7. 螺纹的标准是以为准。 A 大径 B 中径 C 小径 D 直径 8. 螺纹的危险截面应在上。 A 大径 B 小径 C 中径 D 直径 9、在常用的螺旋传动中,传动效率最高的螺纹是__________。 A三角形螺纹 B梯形螺纹 C锯齿形螺纹 D矩形螺纹

10、在常用的螺纹联接中,自锁性能最好的螺纹是__________。 A三角形螺纹 B梯形螺纹 C锯齿形螺纹 D矩形螺纹 11、当两个被联接件不太厚时,宜采用__________。 A双头螺柱联接 B螺栓联接C螺钉联接 D紧定螺钉联接 12、当两个被联接件之一太厚,不宜制成通孔,且需要经常拆装时,往往采用__________。 A螺栓联接 B螺钉联接C双头螺柱联接 D紧定螺钉联接 13、当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常拆装时,往往采用__________。 A螺栓联接B螺钉联接C双头螺柱联接 D紧定螺钉联接 14、普通螺纹的牙型角α为60o,当摩擦系数μ=时,则该螺纹副的当量摩擦系数μv=__________。 B C D 15、在拧紧螺栓联接时,控制拧紧力矩有很大方法,例如__________。 A增加拧紧力 B增加扳手力臂 C使用测力矩扳手或定力矩扳手 16、螺纹联接防松的根本问题在于__________。 A增加螺纹联接的轴向力 B增加螺纹联接的横向力 C防止螺纹副的相对转动 D增加螺纹联接的刚度 17、螺纹联接预紧的目的之一是__________。 A增强联接的可靠性和紧密性 B增加被联接件的刚性 C 减小螺栓的刚性 18、承受预紧力F′的紧螺栓联接在受工作拉力F时,剩余预紧力为F″,其螺

螺纹连接重要习题

螺纹连接重要习题

————————————————————————————————作者: ————————————————————————————————日期: ?

《螺纹连接练习题》 一、单选题(每题1分) 1. 采用凸台或沉头座其目的为。 A 便于放置垫圈B避免螺栓受弯曲力矩 C 减少支承面的挤压应力D增加支承面的挤压应力 2.联接螺纹要求自锁性好,传动螺纹要求。 A平稳性B效率高 C 螺距大 D 螺距小 3. 连接用的螺纹,必须满足条件。 A 不自锁 B 传力 C 自锁 D 传递扭矩 4. 单线螺纹的螺距导程。 A 等于 B 大于 C 小于D与导程无关 5.同一螺栓组的螺栓即使受力不同,一般应采用相同的材料和尺寸,其原因是。 A 便于装配 B 为了外形美观C使结合面受力均匀 D 减少摩损 6. 用于联接的螺纹,其牙形为。 A 矩形B三角形C锯齿形 D 梯形 7. 螺纹的标准是以为准。 A大径B中径 C 小径 D 直径 8. 螺纹的危险截面应在上。 A 大径B小径 C 中径 D 直径 9、在常用的螺旋传动中,传动效率最高的螺纹是__________。

A三角形螺纹 B梯形螺纹 C锯齿形螺纹D矩形螺纹 10、在常用的螺纹联接中,自锁性能最好的螺纹是__________。 A三角形螺纹B梯形螺纹C锯齿形螺纹D矩形螺纹 11、当两个被联接件不太厚时,宜采用__________。 A双头螺柱联接B螺栓联接C螺钉联接 D紧定螺钉联接 12、当两个被联接件之一太厚,不宜制成通孔,且需要经常拆装时,往往采用__________。 A螺栓联接B螺钉联接C双头螺柱联接D紧定螺钉联接 13、当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常拆装时,往往采用__________。 A螺栓联接B螺钉联接C双头螺柱联接D紧定螺钉联接 14、普通螺纹的牙型角α为60o,当摩擦系数μ=0.10时,则该螺纹副的当量摩擦系数μv=__________。 A0.105 B 0.115 C 0.1115D0.104 15、在拧紧螺栓联接时,控制拧紧力矩有很大方法,例如__________。 A增加拧紧力B增加扳手力臂C使用测力矩扳手或定力矩扳手 16、螺纹联接防松的根本问题在于__________。 A增加螺纹联接的轴向力B增加螺纹联接的横向力 C防止螺纹副的相对转动D增加螺纹联接的刚度 17、螺纹联接预紧的目的之一是__________。 A增强联接的可靠性和紧密性B增加被联接件的刚性 C减小螺栓的刚性

螺栓连接例题

一受轴向外载荷F =1000 N 的紧螺栓联接,螺栓的刚度为C 1,被联接件的刚度为C 2,且2C =81C ;预紧力F 0=1000 N 。试求螺栓中的总拉力2F 和被联接件中的残余预紧力F 1。 螺栓总拉力N 11.11110008100002=?++=++=b b b b b C C C F Cm C C F F 被联接件中剩余预紧力 N 1.111100088100001=?+-=+-=m b m m b m C C C F C C C F F 用4个M12普通螺钉把板1固定在零件3上,零件1与3之间有摩擦片2,各零件之间摩擦系数μ=0.13,螺钉强度级别为5.6级,σS MPa =300,安全系数S =4.5;防滑系数(可靠性 系数)K f =

解: 向螺栓组形心简化T F =?175,F F Q = F Tr r T nr F F T i ===?=∑max ()()().2 175425175 [][] N .7205)203.14/()5.4/300(5 .4/300)/()203.14(5 .4/300)/()3.14(2013.0/23.1/225.075.125.04//212121max f P T max P =?? ? ??= '?==?=='=+=+====d F d F d F F F F K F F F F F F F F F n F F ππσπσμ≤≤≤ 图示轴承盖用4个螺钉固定于铸铁箱体上,已知作用于轴承盖上的力F Q =10.4kN ,螺钉材料为Q235钢,屈服极限MPa 240S =σ,取残余预紧力F 1为工作拉力的0.4倍,不控制预紧力,取安全系数[]4=S ,求螺栓所需最小直径。

高强度螺栓连接的设计计算.

第39卷第1期建筑结构2009年1月 高强度螺栓连接的设计计算 蔡益燕 (中国建筑标准设计研究院,北京100044) 1高强度螺栓连接的应用 高强度螺栓连接分为摩擦型和承压型。《钢结构 (G设计规范》B50017—2003)(简称钢规)指出目前制 造厂生产供应的高强度螺栓并无用于摩擦型和承压型连接之分”因高强度螺栓承压型连接的剪切变形比摩擦型的大,所以只适用于承受静力荷载和间接承受动力荷载的结构”。因为承压型连接的承载力取决于钉杆剪断或同一受力方向的钢板被压坏,其承载力较之摩擦型要高出很多。最近有人提出,摩擦面滑移量不大,因螺栓孔隙仅为115?2mm,而且不可能都偏向一侧,可以用承压型连接的承载力代替摩擦型连接的,对结构构件定位影响不大,可以节省很多螺栓,这算一项技术创新。下面谈谈对于这个问题的认识。 在抗震设计中,一律采用摩擦型;第二阶,摩擦型连接成为承压型连接,要求连接的极限承载力大于构件的塑性承载力,其最终目标是保证房屋大震不倒。如果在设计内力下就按承压型连接设计,虽然螺栓用量省了,但是设计荷载下承载力已用尽。如果来地震,螺栓连接注定要破坏,房屋将不再成为整体,势必倒塌。虽然大部分地区的设防烈度很低,但地震的发生目前仍无法准确预报,低烈度区发生较高烈度地震的概率虽然不多,但不能排除。而且钢结构的尺寸是以mm计的,现代技术设备要求精度极高,超高层建筑的安装精度要求也很高,结构按弹性设计允许摩擦面滑移,简直不可思议,只有摩擦型连接才能准确地控制结构尺寸。总体说来,笔者对上述建议很难认同。2高强度螺栓连接设计的新进展 钢规的715节连接节点板的计算”中,提出了支撑和次梁端部高强度螺栓连接处板件受拉引起的剪切破坏形式(图1),类似破坏形式也常见于节点板连接,是对传统连接计算只考虑螺栓杆抗剪和钉孔处板件承压破坏的重要补充。 1994年美国加州北岭地震和1995年日本兵库县南部地震,是两次地震烈度很高的强震,引起大量钢框架梁柱连接的破坏,受到国际钢结构界的广泛关注。

螺栓断裂失效原因分析

测试与分析 螺栓断裂失效原因分析 华南理工大学机电系(广州 510641) 高 岩 李 林 许麟康 【摘要】 合金结构钢(相当于我国35CrMo钢)制螺栓用于空调压缩机内连接气缸体与气缸盖,在生产线上用气动搬手装配时相当部分发生断裂。失效分析结果表明,机加工时螺纹根部及表面形成微裂纹,以及回火不足,硬度偏高,共同造成了螺栓失效。 关键词:低合金钢 螺栓 微裂纹 F ailure Analysis on the Fracture of Bolts G ao Yan,Li Lin,Xu Linkang (Department of Mechano2Electronic Engineering,S outh China University of Technology,Guangzhou510641)【Abstract】 A batch of bolts with size of M4×1135used to connect cylinder body and cover of air conditioner com pressor were made of imported low alloy steel close to35CrMo in com position1However,a great proportion of the bolts fractured when being assembled us2 ing pneumatic spanner1After failure analysis,it was found that the main reason for the ru pture of bolts was the micro2cracks induced by machining.At the same time,non2enough tempering which resulted in the brittleness of the material also accounted for the fracture1 K ey w ords:low alloy steel,bolt,micro2crack 某标准件公司一批螺栓,规格为M4×1135,材料为合金结构钢,相当于我国的35CrMo钢,冷墩头部,搓制螺纹,热处理工艺为淬火+回火,并进行发兰处理,规定σb>1000MPa, (32~38)HRC。螺栓用于空调压缩机内连接气缸体与气缸盖,但在生产线上用气动搬手装配时相当部分螺栓在与螺栓交截的第二、第三螺纹牙根处发生断裂。我们对该批螺栓的断裂原因进行了分析。 1 金相观察及硬度分析 在一批断裂螺栓中随机选取2个断裂螺栓头,将其沿轴向剖开,制备轴向剖面的金相试样,抛光状态(未侵蚀)下可见在螺纹尖端和根部有明显裂纹存在(图略);这些微裂纹由于高度的应力集中,在外力作用下极容易发生失稳扩展,从而导致螺栓断裂。 将上述抛光态试样用3%硝酸酒精溶液侵蚀后在显微镜下观察,发现其组织形态都很相似,为保持原马氏体位向的回火索氏体,见图1所示。35CrMo钢用作螺栓时,应有较好的综合力学性能,其组织应以调质状态为佳,即淬火+回火后得到回火索氏体。而本例中螺栓组织状态虽是回火索氏体,但原马氏体位向十分明显,显然会使材料的塑性和韧性受损,脆性增加,材料硬度也会增加。沿螺牙顶端到根部依次打硬度,所得结果见表1,可见硬度范围为(37~41)HRC,偏高于螺栓规定的硬度范围。螺栓硬度偏高的原因主要是回火不足或不充分造成的。 2 扫描电镜观察分析 为弄清螺栓断裂的机理,按断口形貌特征选取了9个样品,将其用物理方法清洗干净后置于扫描电镜下进行观察,发现断口有3种类型:第1类是断口边缘只有一个剪切唇(1号样品),第2类是断口边缘有2个剪切唇(2号样品),第3 高岩:女,35岁,工学硕士,讲师,曾以访问学者身份在葡萄牙焊接质量研究所(ISQ)工作,兼任中国机械工程学会失效分析分会失效分析工程师。主要从事高温合金,金属材料的腐蚀与防护,失效分析及工业设备寿命评估等方面的工作。已在国内外学术刊物上发表论文10余篇。收稿日期:1997年8月19 日。 图1 螺栓基体组织 ×500 表1 螺栓的硬度HRC 选点12345 试样14137393937 试样24039.5413937 类是断口边缘有3个剪切唇(3号样品),且以第3类断口数量居多。图2是2号样品的宏观断口形貌。这些断口边缘除剪切唇处或凸起或凹进以外,其余边缘处都较平滑,这与一般断裂由心部起源,最后断裂边缘处为杯口状剪切唇的断口形貌特征显然不同,而且,从断口的放射辉纹的走向看,断裂的起源都在断口的边缘即螺纹的根部上,而不是在螺栓的心部。对3类断口分别在扫描电镜下进行了详细的观察,图3a~3d 为2号样品的微观形貌。a是始断区,从右侧的螺纹面上可见明显发兰处理后的表面氧化膜,在螺纹面与断口的交界处(即螺纹根部)可见二次裂纹和摩擦痕存在;将a放大至b,可见摩擦痕底下是氧化物,而摩擦痕明显位于断口一侧,由此可以推断:此摩擦痕处在断裂前就已经有裂纹存在,裂纹为搓制螺纹时所产生,在随后的发兰处理过程中此裂纹内部也进行了发兰处理,形成了氧化膜,其形态与螺旋表面的发兰膜相 43《金属热处理》1998年第2期

螺栓连接薄板应力的有限元分析

北京力学会第18届学术年会论文集:工程应用 螺栓连接薄板应力的有限元分析 王升涛张建宇 (北京航空航天大学航空科学与工程学院,100191) 摘要:用ANSYS 软件对带预紧力和装配应力的螺栓连接薄板应力分布进行有限元分析。针 对连接件不同约束条件,计算得到薄板受拉时预紧力对螺栓孔处等效应力的影响。 关键词:预紧力,接触,螺栓连接,有限元分析 一、 引言 带预紧力和装配应力的螺栓连接是飞机结构中的常见连接形式。预紧力的存在使被连接的构件之间存在摩擦力的作用,导致了构件之间力的相互作用变得复杂。本文应用有限元分析研究了螺栓孔附近应力的几种影响因素。 二、 有限元模型及计算结果 连接结构如图1,由两块较长的薄板搭接在一起,采用纵向排列的两个沉头螺栓联接。薄板材料为铝合金,弹性模量取为70GPa ,泊松比取为0.33,螺栓材料为合金钢,弹性模量取为200GPa ,泊松比取为0.3。 图1 螺栓连接结构 为了更精确地模拟螺栓连接的力学行为和应力分布,划分网格之后,在模型中创建了9个接触对。模型中装配应力的施加是通过在接触对上设定初始干涉来实现的,而预应力的施加是通过降低螺栓的温度实现的。假设连接件一端固支,另一端受均布拉力q 的作用,几何尺寸固定不变,并假定装配应力为某一固定值不变,分别对以下两种情况进行了有限元分析:(1)薄板上下表面自由。(2)薄板不能发生弯曲。 情况(1)的计算结果汇总在图3-图5中,情况(2)结果汇总在图6-图7中,其中F 为预紧力,max σ为最大von Mises 应力,q 为板端均布拉力,k 为max σ与q 的比值。图3、 图6表明薄板表面的约束情况不同,应力分布也会有所不同,但最大von Mises 应力都出现在带沉孔板的螺栓孔孔壁上。图4表明在情况(1)下,一定范围内的预紧力对螺栓孔处的最大von Mises 应力没有明显影响。图5表明情况(1)下,螺栓孔处的最大应力随拉力的增加线性增加。图7表明在情况(2)下,预紧力对螺栓孔处最大von Mises 应力有较大影响;不同拉力水平下,预紧力对最大von Mises 应力的影响趋势相同,具体体现为:预紧力较小时,最大von Mises 应力较大,随着预紧力的增加,最大von Mises 应力减小,预紧力继续增加,最大von Mises 应力增大。

紧固件断裂失效类型及原因分析

紧固件断裂失效类型及原因分析 前言 机器或钢结构件是由许多个零件和部件组成,这些零件和部件绝大部分是通过螺纹紧固件连接在一起的。一旦紧固失效将造成机器失灵,严重者甚至出现人员伤亡事故。由于紧固失效的常见性和潜在的严重性,所以我们应认真仔细地分析并找出紧固失效的原因,采取纠正措施,以杜绝紧固失效的发生。 紧固失效有两种,一种是螺栓断裂,被紧固零件瞬间分离,这种失效往往会造成严重的后果;还有一种是螺纹副松动和螺栓或螺母滑牙,被紧固零件出现一定范围的相互位移,造成机器部分功能失常。人们发现,及时采取措施可以避免事故的发生。如因未发现任其继续发展,螺栓和螺母终将分离,同样会引发重大安全事故。紧固失效后直观现象是螺栓断裂或螺母与螺栓分离,因此人们一般认为螺栓断裂是螺栓质量有问题,螺母松动是螺母质量不好。大家往往忽略了设计和安装中的问题。 一、剪切断裂 剪切断裂出现在螺栓只受预紧力的连接中(见图1)。剪切断口出现在螺栓杆部,位于两个被紧固零件的结合面处(见图1),断口有小面积的平整光亮剪切面。出现剪切断裂有下列原因:

图1 图2 1、设计原因 ⑴被紧固零件的结合面间摩擦系数太小或螺栓规格不够大造成预紧力F'不够,即: fF'<F ( f-结合面间的摩擦系数 )此时结合面间摩擦力小于横向工作载荷F,被紧固零件出现相对滑移,螺栓承受孔壁的挤压,当挤压力足够大时螺栓被剪切断。在运动部件上因冲击力更大,所以出现的可能性也更大。为了避免这种现象的发生,在设计上可以采用减载件和台阶来承受横向载荷,使螺栓仅起纯连接作用(见图2)。 ⑵在振动工作环境下工作零件的紧固,未采用具有防松功能的紧固件。在工作一段时间后,紧固件螺纹副出现松动,螺栓夹紧力(预紧力F')下降,此时也将发生上述同样的结果。为了避免因松动而造成紧固失效,设计时应采用具有防松功能的紧固件,如美国施必牢防松螺母、有效力矩螺母。 2、装配原因 装配时预紧扭矩过小,造成预紧力不够,即F'小,出现上述同样的结果。螺纹紧固件安装时的紧固力矩在钢结构设计、施工和发动机装配上作为一个重要的工艺指标被严格执行。而在其它行业就常被设计和施工单位疏忽,或是根本就无此概念。笔者在实际工作中常见到螺纹连接失效的实例,究其原因,实际上许多都是因安装扭矩不合适而造成的松脱和螺栓拉断。 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(安装扭矩)成正比,为了保证达到设计所需

联接螺栓强度计算方法

联接螺栓的强度计算方法

一.连接螺栓的选用及预紧力: 1、已知条件: 螺栓的s=730MPa 螺栓的拧紧力矩T=49N.m 2、拧紧力矩: 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2。装配时可用力矩扳手法控制力矩。 公式:T=T1+T2=K* F* d 拧紧扳手力矩T=49N.m 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 摩擦表面状态K值 有润滑无润滑 精加工表面0.1 0.12 一般工表面0.13-0.15 0.18-0.21 表面氧化0.2 0.24 镀锌0.18 0.22 粗加工表面- 0.26-0.3 取K=0.28,则预紧力 F=T/0.28*10*10-3=17500N 3、承受预紧力螺栓的强度计算: 螺栓公称应力截面面积As(mm)=58mm2

外螺纹小径d1=8.38mm 外螺纹中径d2=9.03mm 计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm 紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。 螺栓的最大拉伸应力σ1(MPa)。 1s F A σ==17500N/58*10-6m 2=302MPa 剪切应力: =0.51σ=151 MPa 根据第四强度理论,螺栓在预紧状态下的计算应力: =1.3*302=392.6 MPa 强度条件: =392.6≤730*0.8=584 预紧力的确定原则: 拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。 () 203 1tan 2 16 v T d F T W d ?ρτπ += = 1.31ca σσ≈[] 02 11.34F ca d σσπ =≤

摩擦型高强螺栓的计算方式

第三章连接返回 §3-6 高强度螺栓连接的构造和计算 3.6.1高强度螺栓连接的工作性能和构造要求 一、高强度螺栓连接的工作性能 1、高强度螺栓的抗剪性能 由图3.5.2中可以看出,由于高强度螺栓连接有较大的预拉力,从而使被连板叠中有很大的预压力,当连接受剪时,主要依靠摩擦力传力的高强度螺栓连接的抗剪承载力可达到1点。通过1点后,连接产生了滑解,当栓杆与孔壁接触后,连接又可继续承载直到破坏。如果连接的承载力只用到1点,即为高强度螺栓摩擦型连接;如果连接的承载力用到4点,即为高强度螺栓承压型连接。 2、高强度螺栓的抗拉性能 高强度螺栓在承受外拉力前,螺杆中已有很高的预拉力P,板层之间则有压力C,而P与C维持平衡(图3.6.1a)。当对螺栓施加外拉力N t,则栓杆在板层之间的压力未完全消失前被拉长,此时螺杆中拉力增量为ΔP,同时把压紧的板件拉松,使压力C减少ΔC(图3.6.1b)。 计算表明,当加于螺杆上的外拉力N t为预拉力P的80%时,螺杆内的拉力增加很少,因此可认为此时螺杆的预拉力基本不变。同时由实验得知,当外加拉力大于螺杆的预拉力时,卸荷后螺杆中的预拉力会变小,即发生松弛现象。但当外加拉力小于螺杆预拉力的80%时,即无松弛现象发生。也就是说,被连接板件接触面间仍能保持一定的压紧力,可以假定整个板面始终处于紧密接触状态。但上述取值没有考虑杠杆作用而引起的撬力影响。实际上这种杠杆作用存在于所有螺栓

的抗拉连接中。研究表明,当外拉力N t≤0.5P时,不出现撬力,如图3.6.2所示,撬力Q大约在N t达到0.5P时开始出现,起初增加缓慢,以后逐渐加快,到临近破坏时因螺栓开始屈服而又有所下降。 由于撬力Q的存在,外拉力的极限值由N u下降到N'u。因此,如果在设计中不计算撬力Q,应使N≤0.5P;或者增大T形连接件翼缘板的刚度。分析表明,当翼缘板的厚度t1不小于2倍螺栓直径时,螺栓中可完全不产生撬力。实际上很难满足这一条件,可采用图3.5.7所示的加劲肋代替。 在直接承受动力荷载的结构中,由于高强度螺栓连接受拉时的疲劳强度较低,每个高强度螺栓的外拉力不宜超过0.5P。当需考虑撬力影响时,外拉力还得降低。 二、高强度螺栓连接的构造要求 1、高强度螺栓预拉力的建立方法 为了保证通过摩擦力传递剪力,高强度螺栓的预拉力P的准确控制非常重要。针对不同类型的高强度螺栓,其预拉力的建立方法不尽相同。 (1)大六角头螺栓的预拉力控制方法有: ①力矩法一般采用指针式扭力(测力)扳手或预置式扭力(定力)扳手。目前用得多的是电动扭矩扳手。力矩法是通过控制拧紧力矩来实现控制预拉力。拧紧力矩可由试验确定,应使施工时控制的预拉力为设计预拉力的1.1倍。当采用电动扭矩搬手时,所需要的施工扭矩T f为:

相关主题
文本预览
相关文档 最新文档