当前位置:文档之家› 青岛海湾大桥施工方案检算书

青岛海湾大桥施工方案检算书

青岛海湾大桥施工方案检算书
青岛海湾大桥施工方案检算书

青岛海湾大桥四合同段

栈桥、钻孔平台、临时码头及钢吊箱

计算书

中铁十四局集团技术开发部

2007-5

1.工程概况

青岛海湾大桥土建工程第4合同段,起止桩号为:左幅K16+010~K19+130,长度为3120m;右幅K15+830~K19+130,长度为3300m。主要施工标准跨度的主线非通航孔桥下部桩基、承台、墩身及支座垫石施工。线路经过区域位于海湾中北部,因沉积物淤积,地势较平坦,在水深小于5—10m的区域,形成大片浅水滩,地形坡度小于13°。本标段施工期平均水深6.2m左右。

由于红岛连接线D匝道外侧栈桥已经搭设完毕,栈桥桥头即在本标起点处,并且水深较浅,为方便施工,本标接既有栈桥继续搭设重型栈桥,栈桥从两墩中间穿过。2.重型栈桥设计与计算

栈桥搭设根据所用材料的不同分两种形式:贝雷架式和军用梁式。

①贝雷梁式:栈桥宽5.0m,每300m设一个汇车点,墩柱采用φ600mm钢管桩,桩间采用剪刀撑连接,横桩距为2.6m,纵桩距15m,桩顶横梁采用2-I16a工字钢,其上纵向铺设贝雷桁架做主梁;贝雷桁架顶部横向满布I20a工字钢,间距75cm;其上纵向铺设I12.6工字钢,间距30cm;顶面铺设厚5mm钢板,如下图所示。

②军用梁式:跨度分24 m和36 m两种,如下图所示。栈桥宽4.0m,每300m设一个汇车点,基础采用φ600mm钢管桩,桩间采用剪刀撑连接,横桩距为2.4m,桩顶横梁采用2-I25a工字钢;其上纵向铺设军用梁做主梁,共4片,24 m跨单层布设,36 m跨双层布设;军用梁顶部横向满布I16工字钢,间距1.0m;其上纵向铺设I14工字钢,间距30cm;顶面铺设厚5mm钢板。

2.1贝雷梁方案

2.1.1荷载

本方案设计荷载为:单跨通过一辆载重8方的混凝土搅拌车。罐车总重量为30吨,考虑冲级系数1.4,那么检算荷载为:300×1.4=420KN。

2.1.2工况

工况一:车辆位于跨中,如图所示;

工况二:车辆位于靠近钢管桩位置,如图所示。

采用SAP2000建立整体模型(如下图所示),对两种工况进行分析。

2.1.4检算结果

2.1.4.1工况一:

⑴纵向I12.6:Mmax=9.18KN·m

(满足要求)

MPa MPa x

W M 215]σ[5.1136

107705.131018.9γmax σ=<=???=

=

Qmax=30.1KN (满足要求)MPa MPa b I S Q x 125]τ[8.56108.410488102.44101.30τ-3

8-6

3*max =<=?????==? ⑵横向分配梁:Mmax=14.8KN ·m

(满足要求)

MPa MPa W M x 215]σ[10010

14105.11081.14γσ6

3

max =<=???=

=

Qmax=75.7KN (满足要求)MPa MPa b I S Q x 125]τ[7.54109.9101130108.80107.75τ-3

8-6

3*max =<=?????==? ⑶贝雷梁:

弦杆:Nmax=256.7KN<613KN ; 斜杆:Nmax=87.1KN<187KN ; 竖杆:Nmax=109.4KN<232KN ;

接头:Nmax=256.7KN<613KN ;Qmax=55.7KN<361KN 。 ⑷垫梁:Mmax=26.1KN ·m

(满足要求)

MPa MPa W M x 215]σ[9.3010

80405.1101.26γσ6

3

max =<=???==

Qmax=175.3KN (满足要求)MPa MPa b I S Q x 125]τ[311026*********

4.461103.175τ-3

8-6

3*max =<=?????==

?

2.1.4.2工况二:

⑴纵向I12.6:Mmax=9.18KN ·m

(满足要求)

MPa MPa W M x 215]σ[5.11310

7705.11018.9γσ6

3

max =<=???=

=

Qmax=30.1KN (满足要求)MPa MPa b I S Q x 125]τ[8.56108.410488102.44101.30τ-3

8-6

3*max =<=?????==? ⑵横向分配梁:Mmax=14.8KN ·m (满足要求)

MPa MPa W M x 215]σ[10010

14105.11081.14γσ6

3

max =<=???==

Qmax=75.7KN (满足要求)MPa MPa b I S Q x 125]τ[7.54109.9101130108.80107.75τ6

3*max =<=?????== ⑶贝雷梁:

弦杆:Nmax=275.3KN<613KN ; 斜杆:Nmax=125KN<187KN ; 竖杆:Nmax=169.1KN<232KN ;

接头:Nmax=275.3KN<613KN ;Qmax=56.5KN<361KN 。

⑷垫梁:Mmax=28.2KN ·m

(满足要求)MPa MPa W M x 215]σ[3.331080405.1102.28γσ63

max =<=×××==

Qmax=174.4KN

(满足要求)MPa MPa b I S Q x 125]τ[9.3010

261010040104.461104.174τ3

-8-6

3*max =<=×××××==× 2.2 军用梁方案

2.2.1 军用梁栈桥(36m )

⑴ 荷载

本方案设计荷载为:单跨通过一辆载重8方的混凝土搅拌车。罐车总重量为30吨,考虑冲级系数1.4,那么检算荷载为:300×1.4=420KN 。

⑵ 工况

工况一:车辆位于跨中;

工况二:车辆位于靠近钢管桩位置。

⑶ 检算

采用SAP2000建立整体模型,对两种工况进行分析。建模如下:

⑷ 检算结果 工况一:

⑴ 纵向I12.6:Mmax=3.17KN ·m

(满足要求)MPa MPa W M x 215]σ[391046.7705.11017.3γσ6

3

max =<=×××== 最大剪应力为28MPa <125MPa ,满足要求

⑵ 横向钢枕:Mmax=17KN ·m

(满足要求)

MPa MPa W M x 215]σ[8.1141014105.11017γσ63

max =<=×××== 最大剪应力为47.9MPa <125MPa ,满足要求

⑶ 军用梁:跨中N1受最大轴力为:524KN <1000KN ,满足受力要求。 工况二:

罐车位于靠近钢管桩位置,

因桥面系相同,故不必检算,仅检算军用梁梁端杆件即可。

经计算,军用梁斜杆最大轴力为188KN <1000KN ,端构件竖杆213KN <540KN ,撑杆受力为82KN <450KN ,各杆件均满足受力要求。

当罐车靠近钢管桩位置时,此时钢管桩基础受力最大,受力包括两部分:相邻两跨重量,合计为:330KN +85KN =415KN 。

此时,钢管桩受力最大为415KN <428KN ,满足受力要求。 钢管桩单桩承载力计算如下:

计算依据:《建筑桩基技术规范》JGJ94-94和本项目岩土工程勘察报告 单桩竖向承载力设计值(R)计算过程:

桩型:预制桩、钢管桩

桩基竖向承载力抗力分项系数:γs=γp=γsp=1.65

桩类别:圆形桩

直径或边长d/a=600mm

截面积As=.282743334m

周长L=1.88495556m

第1土层为:淤泥,极限侧阻力标准值qsik=20Kpa

层面深度为:-4.5m; 层底深度为:-13m

土层厚度h= 8.5 m

土层液化折减系数ψL=1

极限侧阻力Qsik=L×h×qsik×ψL=1.88495556×8.5 ×20×1= 320.4424452 KN

第2土层为:粘土,极限侧阻力标准值qsik=50Kpa

层面深度为:-13m; 层底深度为:-16.5m

土层厚度h= 3.5 m

土层液化折减系数ψL=1

极限侧阻力Qsik=L×h×qsik×ψL=1.88495556× 3.5 ×50×1= 329.867223 KN

总极限侧阻力Qsk=∑Qsik= 650.3096682 KN

极限端阻力标准值qpk=200KN

极限端阻力Qpk=qpk×As=200×.282743334= 56.5486668 KN

总侧阻力设计值QsR=Qsk/γs= 394 KN

端阻力设计值QpR=Qpk/γp= 34 KN

基桩竖向承载力设计值R=Qsk/γs+Qpk/γp= 650.3096682 /1.65+ 56.5486668 /1.65= 428 KN

2.2.2军用梁栈桥(24m)

24m军用梁栈桥在SAP2000里建模如下图所示:

24m军用梁栈桥与36m军用梁栈桥桥面系部分设计相同,在此不进行检算,现检算军用梁受力情况:

⑴荷载位于跨中,受力分析后,跨中处杆件最大轴力为413KN<1000KN,故受力满

足要求。

⑵当荷载位于边上时,受力分析如下图所示:

端构件最大轴力为131KN<540KN,N3杆受最大轴力为141KN<550KN,各杆件受力均满足军用梁承载力要求。

⑶基础部分与36m军用梁相同,而其跨度较小,检算参考36m跨度军用梁栈桥,

受力满足要求。

3.钻孔平台检算

钻孔平台基础采用φ600×8mm的钢管桩,钢管桩顶部设置2I32a垫梁,梁部结构采用贝雷梁,跨度15m,贝雷梁顶部设I20a横梁,间距40cm,I20a横梁顶部满铺8mm

钢板,在SAP2000中建模如下图所示:

在钻孔平台上加载如下:

经程序分析得:

I25a横梁:

Mmax=32KN.m

(满足要求)MPa MPa W M x 215]σ[8.7510

40205.11032γσ6

3max =<=???=

=

Qmax=144.65KN

(满足要求)MPa MPa b I S Q x 125][3.3310

8105020107.23010583-8-6

3*max =<=?????==

?-ττ 贝雷梁:

弦杆:Nmax=435KN<613KN ; 斜杆:Nmax=74KN<187KN ; 竖杆:Nmax=104KN<232KN ;

接头:Nmax=435KN<613KN ;Qmax=55.7KN<361KN 。 2I32a 垫梁: Mmax =141.3KN.m

(满足要求)MPa MPa W M x 215]σ[9710

138405.1103.141γσ6

3

max =<=???=

=

Qmax=144.65KN

(满足要求)MPa MPa b I S Q x 125][5.2710191022160105.8001065.1443

-8-63*max =<=?????==?-ττ

钢管桩:

Nmax=220.6KN <800KN (单桩承载力)

4. 吊箱围堰检算

单壁式钢吊箱围堰采用圆形,直径10.2 m ,承台和内壁有很大的空隙,最大处1.7 m ,对角线处最小0.71 m ,以便于质量检查和防腐工程施工。根据施工区段的水位变化确定钢吊箱的高度,由涌潮时的最高水位控制,高度设计为7.0m ,分上下2节,每节6块,底模由主横梁和钢筋砼底板组成,钢筋砼底板厚0.1m ,侧模采用单壁形式,壁厚0.4 m ,周围边箱板可拆除后多次倒用,底板部分可视作一次性消耗材料。

1、单壁式钢吊箱围堰设计介绍 ①受力体系介绍

套箱底模为槽钢组成的主横梁上承钢筋砼底板,槽钢选用I40b ,共8组,槽钢通过拉压杆吊起,拉压杆焊接在钢护筒上,作为套箱支撑受力点,用以支撑钢吊箱和封底混凝土以及承台混凝土的重量。钢吊箱无论是承受承台砼压力还是承受高潮位时的上浮力,都会通过拉压杆将压力或拉力传给钻孔灌筑桩、钢护筒和钢管桩上。

②钢吊箱围堰结构

钢吊箱围堰由侧模、底模2部分组成,设计总重约38t。底模I40b为主横梁,共8组,按照2.0m间距布置。主横梁中间位置通过拉压杆吊起,同时把拉压杆焊接在钢护筒上,两端用倒链挂在钢管桩上,形成框架后,上面铺设套箱底板。套箱底板用钢筋砼制作,厚度0.1m,并预埋法兰,法兰上焊接拉压杆。套箱的侧板采用6mm 的钢板、四周由∠100号角钢组成的环形行架,[10号槽钢竖向背肋,□10横向背肋组成,分块加工制作而成,块与块之间采用法兰连接,法兰之间采用止水橡胶圈,防止渗漏。

根据承台施工过程,对吊箱围堰的检算可分如下工况:

工况一:倒链下放吊箱围堰,该施工过程中,底板主梁承担吊箱重量、底板混凝土重量,需对底板主梁进行检算。

工况二:吊箱围堰下放到位后,浇注封底混凝土阶段,该阶段由主梁承担封底混凝土重量,需检算底板主梁。

工况三:将吊箱围堰连通管封堵后,抽出围堰内的海水,且位于高潮水位,此时,吊箱围堰侧壁承受海水压力,底板承担浮力,需检算吊箱围堰侧壁强度、拉压杆及焊缝强度。

4.1 工况一

如下图所示,倒链下放钢吊箱,此时,吊箱及底板重量由倒链承担,需对底板主梁进行检算:

以上工况在SAP2000下建模如下:

计算后,弯矩如下图所示:

纵向I40b :Mmax=73KN ·m

(满足要求)MPa 215]σ[MPa 6110

114005.11073W γM σ6

3x max =<=×××=

=

Qmax=58KN (满足要求)

MPa 125]τ[MPa 7.13105.121022780102.6711058b I S Q τ3

-8-6

3x *max =<=×××××==×

4.2 工况二

混凝土浇注阶段: 建模如下图所示:

4.2.1 底模主梁:

纵向I40b :Mmax=120KN ·m

(满足要求)MPa 215]σ[MPa 3.10010

114005.110120W γM σ6

3x max =<=×××=

=

Qmax=58KN (满足要求)

MPa 125]τ[MPa 17105.121022780102.6711072b I S Q τ3-8-6

3x *max =<=×××××==× 4.2.2 拉压杆2[14

砼浇注阶段,拉压杆受拉力,经计算为307KN ,

PMa 70000043

.0103073

=×=σ<215MPa ,满足受力要求。 4.3 工况三

如下图所示:

4.3.1 吊箱强度检算

此时,吊箱封底混凝土处收水压力最大,最大水压力为:

2/4.594.511m KN rH P =×==

取吊箱靠近封底混凝土处1m 高度进行检算,受力如下图所示:

根据计算可知:KN 373d cos 1P R F 2

/π0

Yc =θ×××θ×=∫θ 该截面承受应力为σ=373/0.0006=62MPa (满足受力要求) 4.3.2 拉压杆检算(2[14)

抽水后,拉压杆承受吊箱围堰浮力, F 浮力=ρνg -围堰重量-封底砼重量

=1.1×3.14×5.42×6.3×10-380-24×3.14×5.12×0.9

=4201KN

每根拉压杆承受压力为262KN,检算如下:

1 输入数据

1.1 基本输入数据

构件材料特性

材料名称:3号钢第1组

设计强度:215.00(N/mm2)

屈服强度:235.00(N/mm2)

截面特性

截面名称:槽钢组合截面(GB707-88):xh=[14a(型号)

槽钢型号:[14a (型号)

截面宽度[100≤w≤600]:500 (mm)

缀件类型:方钢缀板

构件高度:4.500(m)

容许强度安全系数:1.00

容许稳定性安全系数:1.00

1.2 荷载信息

恒载分项系数:1.00

活载分项系数:1.40

是否考虑自重:考虑

轴向恒载标准值: 262.000(kN)

轴向活载标准值: 0.000(kN)

偏心距Ex: 0.0(cm)

偏心距Ey: 0.0(cm)

1.3 连接信息

连接方式:普通连接

截面是否被削弱:否

1.4 端部约束信息

X-Z平面内顶部约束类型:固定

X-Z平面内底部约束类型:固定

X-Z平面内计算长度系数:0.65

Y-Z平面内顶部约束类型:固定

Y-Z平面内底部约束类型:固定

Y-Z平面内计算长度系数:0.65

2 中间结果

2.1 截面几何特性

面积:37.04(cm2)

惯性矩Ix:1128.00(cm4)

抵抗矩Wx:161.00(cm3)

回转半径ix:5.52(cm)

惯性矩Iy:20197.79(cm4)

抵抗矩Wy:807.91(cm3)

回转半径iy:23.35(cm)

塑性发展系数γx1:1.05

塑性发展系数γy1:1.00

塑性发展系数γx2:1.05

塑性发展系数γy2:1.00

分肢的Ix:564.00(cm4)

分肢的Iy:53.20(cm4)

分肢的ix:5.52(cm)

分肢的iy:1.70(cm)

2.2 材料特性

抗拉强度:215.00(N/mm2)

抗压强度:215.00(N/mm2)

抗弯强度:215.00(N/mm2)

抗剪强度:125.00(N/mm2)

屈服强度:235.00(N/mm2)

密度:7850.00(kg/m3)

2.3 稳定信息

绕Y轴屈曲时最小稳定性安全系数:2.54

绕X轴屈曲时最小稳定性安全系数:2.43

绕Y轴屈曲时最大稳定性安全系数:2.56

绕X轴屈曲时最大稳定性安全系数:2.45

绕Y轴屈曲时最小稳定性安全系数对应的截面到构件顶端的距离:4.500(m) 绕X轴屈曲时最小稳定性安全系数对应的截面到构件顶端的距离:4.500(m) 绕Y轴屈曲时最大稳定性安全系数对应的截面到构件顶端的距离:0.000(m) 绕X轴屈曲时最大稳定性安全系数对应的截面到构件顶端的距离:0.000(m) 绕X轴弯曲时的轴心受压构件截面分类(按受压特性):b类

绕Y轴弯曲时的轴心受压构件截面分类(按受压特性):b类

绕X轴弯曲时的稳定系数:0.84

绕Y轴弯曲时的稳定系数:0.81

绕X轴弯曲时的长细比λ:52.99

绕Y轴弯曲时的长细比λ:60.14

按《建筑钢结构设计手册》P174表3-2-24计算的φb_X:1.00

按《建筑钢结构设计手册》P174表3-2-24计算的φb_XA:1.00

按《建筑钢结构设计手册》P174表3-2-24计算的φb_XB:1.00

按《建筑钢结构设计手册》P174表3-2-24计算的φb_Y:1.00

按《建筑钢结构设计手册》P174表3-2-24计算的φb_YA:1.00

按《建筑钢结构设计手册》P174表3-2-24计算的φb_YB:1.00

2.4 强度信息

最大强度安全系数:3.04

最小强度安全系数:3.02

最大强度安全系数对应的截面到构件顶端的距离:0.000(m)

最小强度安全系数对应的截面到构件顶端的距离:4.500(m)

计算荷载:263.90kN

受力状态:轴压

青岛海湾大桥栈桥设计、施工及监测

青岛海湾大桥栈桥设计、施工及监测 1栈桥设计 1.1设计依据 对于栈桥设计,我国目前尚没有可以遵循的规范。为此,在栈桥设计中,我们遵循业主发布的青岛海湾大桥土建工程施工招标文件及相关要求和规定,同时遵守国家及相关行业标准、当地水文地质资料和有关设计手册。 国家及相关行业标准: ①《公路桥涵设计通用规范》(JTJ021-89) ②《公路桥涵地基与基础设计规范》(JTJ 024-85) ③《公路桥涵钢结构及木结构设计规范》(JTJ025-86) ④《港口工程桩基规范》(JTJ 254-98)及2001年局部修订 ⑤《港口工程荷载规范》(JTJ 254-98) ⑥《海港水文规范》(JTJ213-98) ⑦《港口工程混凝土结构设计规范》(JTJ267-98) ⑧《海港工程混凝土结构防腐蚀技术规范》(JTJ275-2000) ⑨青岛水利研究院所提供资料 ⑩青岛海湾大桥工程区波浪基本特征. 1.2结构设计 栈桥采用多跨连续梁方案,主要跨径为15m。 贝雷梁结构:采用7×15m一联“321”型贝雷桁架,每联之间设立双墩,断面采用8片贝雷桁架,其间距采用0.9m;桥面宽8.0m; 桥面系:由钢板和型钢组成的正交异性板桥面系; 桩基础:φ600和φ800,δ=10mm厚钢管桩;钢管桩所用钢管,材质为Q235,采用钢板卷焊。 详见: 图1:栈桥桥式平面布置图 图2:一联栈桥结构立面图 图3:栈桥支座处断面图 图4:单孔桥面系构造图

图4单孔桥面系构造图(15m) 1.3结构计算 栈桥的结构设计计算,详细内容见栈桥的结构计算书(附件),在本施工组织正文中只做

①设计荷载组合与设计验算准则 根据业主提出的栈桥施工荷载要求,参照《公路桥涵设计通用规范》(JTJ021-89)及《港口工程荷载规范》,经反复研究讨论,将栈桥设计,取3种状态、5种最不利工况进行设计验算。 “工作状态”是指:栈桥正常使用车辆荷载与对应工作状态标准的其它可变荷载(风、浪、流)作用的组合。 “非工作状态”是指:在恶劣海洋气候条件下,栈桥上不允许通行车辆,仅承担相应其它可变荷载(风、浪、流)作用的组合。 栈桥施工状态是指:栈桥在自身施工期间可能出现的最不利施工荷载组合,经反复计算,以单跨栈桥通行履带吊施工荷载及履带吊在前端打桩时控制设计。 栈桥作为一种重要的临时结构,根据相关规范要求和具体工程情况,确定设计验算准则:a在工作状态下,栈桥应满足正常车辆通行的安全性和适用性要求,并具有足够的安全储备。b在非工作状态下,栈桥停止车辆荷载通行,此时栈桥应能满足整体安全性的要求,允许出现局部可修复的损坏。 c在栈桥施工状态下,栈桥应满足自身施工过程的安全,但6级风以上时,应停止栈桥施工。 其中工况Ⅰ-工况Ⅲ(贝雷梁)以及提供下部钢管桩的竖向计算荷载,工况Ⅴ用于验算施工状态下上部结构的应力,工况Ⅳ仅用于计算下部钢管桩的横向计算荷载,与前三种荷载组合情况下计算的竖向荷载一同验算下部的钢管桩基础。 表1栈桥的设计状态与最不利工况 设计状态工况 荷载组合 恒载基本可变荷载其它可变荷载 工作状态 I 结构自重汽车超20 对应工作状态标准的风、 波浪和潮流作用 II 结构自重100t履带吊 III 结构自重挂120 非工作状态Ⅳ结构自重— 对应非工作状态标准的 风、波浪和潮流作用栈桥施工状态Ⅴ结构自重100t履带吊— ②设计荷载参数 a 车辆荷载 (1)汽-超20(单列);设计行车速度为15km/h,不计冲击作用。

隧道仰拱栈桥设计计算(实例介绍)

隧道仰拱栈桥设计计算(实例介绍) 按照我公司以往施工经验和现场施工实际情况,并按照尽早开挖尽快封闭成环的原则,一般仰拱施工段落为6米。根据现场工字钢的供应情况,并保证栈桥结构的强度刚度满足整个隧道施工循环内相关车辆通行的要求。拟选择采用2根25a#工字钢上下翼缘焊接为一组,栈桥每边采用三组并排,顶部用Φ22螺纹钢筋连成整体,纵向间距10~15cm ,以提高栈桥结构的平面内、外强度和刚度。纵向两端做成1m 长坡道方便车辆通行,两幅栈桥横向间距根据车轮轮距布置,保证车轮压在栈桥中部。钢材长度为工字钢标准长度12米。净跨度按8m 进行计算,如图a 所示: 25a 工字钢 小里 程端 图a A B 大里程端 12m 8m 2m 2m 单位: m 工字钢间上下翼缘板采用通长焊接,提高整体性. 三、仰拱栈桥结构计算 栈桥结构为两部各6根Ⅰ25a 工字钢并排布置作为纵梁,每两根工

字钢上下翼缘板通长焊接,横向顶部用Φ22螺纹钢筋连接,保证在车轮荷载作用下纵梁能够共同受力,并且能够提高栈桥桥面的横向刚度。 设计荷载按出渣车40t 重车,前后轮轮距为4.5m ,前轴分配总荷载的1/3,后轴为2/3,左右侧轮各承担1/2轴重,工字钢为整体共同承担重车荷载,工字钢自重、按1.15系数设计,动载及安全系数设计为1.1。 1、力学简化 梁两端都有转动及伸缩的可能,故计算简图可采用简支梁(如图b )。 A 图b 单位:cm 由于截面上的弯矩随荷载的位置变化而变化的,因此在进行结 构强度计算时,应使在危险截面上即最大弯矩截面上的最大正应力不超过材料的弯曲许用应力[σ]故需确定荷载的最不利位置,经荷载不同位置处的弯矩比较在检算最大正应力时,应取P/3荷载在跨中位置(如图c ): 图c A 单位:cm 计算最大剪应力时,取荷载靠近支座位置(如图d )。

青岛海湾大桥桥墩施工方案(doc 12页)

青岛海湾大桥桥墩施工方案(doc 12页)

更多企业学院: 《中小企业管理全能版》183套讲座+89700份资料《总经理、高层管理》49套讲座+16388份资料《中层管理学院》46套讲座+6020份资料《国学智慧、易经》46套讲座 《人力资源学院》56套讲座+27123份资料《各阶段员工培训学院》77套讲座+ 324份资料《员工管理企业学院》67套讲座+ 8720份资料《工厂生产管理学院》52套讲座+ 13920份资料

SD匝道桥:2010年5月15日~2010年10月31日 6#、7#、8#主桥:2010年3月1日~2010年4月31日 SA1-SA3匝道:2010年3月25日~2010年4月30日 SA4#、SA5#匝道:2010年7月10日~2010年8月31日一、施工方案 承台施工前,对墩身中心进行测量控制,定出墩身控制线和标高控制点以及墩身钢筋笼预埋承台内准确位置。对承台与墩身的交接面进行凿毛,做好施工缝的处理;在承台内按设计要求埋设墩身钢筋及必要的固定墩身模板用的钢筋;搭设吊装模板用双排脚手架及人行爬梯,脚手架采用碗口式脚手杆件组装。 因6#、7#、8#主桥位于河道内,SA1#-SA3#匝道桥跨越主河道,为减小汛期施工影响,确保6#、7#、8#主桥、匝道SA1#-SA3#桥、1#主桥在2010年5月底箱梁施工完,并落架清理完河道。6#、7#、8#主桥、匝道SA1#-SA3#桥、1#主桥墩柱同步施工,项目部计划6#、7#、8#主桥投10套墩柱模板,匝道2套墩柱模板,1#主桥2套墩柱模板。2#、3#、4#、5#主桥及SD匝道墩柱紧跟6#、7#、8#主桥、SA匝道平行推进。 全桥墩柱拟配备14套墩柱模板循环进行施工。墩柱模板采用工厂制作定型大钢模板,模板与加固背带焊接为一体,按墩身高度确定每节高0.5米、1米及3米,采用汽车吊进行拼装,墩身四角对称设钢丝绳拉紧锚定。 墩柱混凝土采用商品混凝土,汽车吊吊2m3料斗浇注,墩柱一次

青岛海湾大桥建设工程项目管理信息系统介绍

青岛海湾大桥建设工程项目管理信息系统介绍 易建科技针对青岛海湾大桥项目的实际情况,设计并实施的工程项目管理信息系统主要包括:工程项目管理子系统、4D形象进度子系统、GPS船舶调度子系统、视频监控子系统、办公自动化系统和公共网站等子系统。该信息系统遵循Java EE行业标准的技术体系,采用三层架构的B/S分布式结构,运用JAVA与XML等语言技术。工程三维形象进度系统采用了清华大学的最新研究成果——建筑工程4D施工管理系统(4D-GCPSU 2006)作为施工管理信息平台。施工现场视频监控系统运用当前最先进网络视频技术,实现无缝的远程监控扩展,系统以IP地址为标识,可直接连入网络,没有线缆长度和信号衰减的限制,实现远程监控和管理。 青岛海湾大桥建设工程管理信息系统建设分为几个层次:面向公众的青岛海湾大桥网站;面向参建单位的工程项目管理系统、青岛海湾大桥4D施工管理系统、施工现场视频监控系统、施工船舶监控调度系统等。通过将现代项目管理学的知识体系与大桥建设项目特点、建设流程以及成熟的工程监理程序相结合,使该项目管理系统具有统筹管理、指挥协同、目标控制和预测等功能,探索出一套适合大型桥梁工程建设的项目管理体系。 工程项目管理子系统 由投资控制、合同管理、进度控制、质量控制、安全控制、招投标管理、材料管理、文档管理、设计管理、工作流等模块组成,全面控制大桥的概算与实际合同执行对比,通过实际投资与概算进行对比,达到有效控制投资目的。通过业主总控制计划来控制施工单位实施计划,达到有效控制大桥施工进度,使工程能够安全施工和更好的控制施工质量,有效跟踪控制大桥建设质量,为大桥建设的质量提供有力保障。通过安全控制,对大桥建设过程进行安全检查与培训,完成对施工安全的严格管理,建立有效的安全保障体系、预防措施和紧急预案,保障大桥的施工建设安全。通过材料管理,对大桥建设的主要材料进行跟踪控制,保障主要材料的质量以及及时供应,既能保证了大桥施工材料的品质、也保障了大桥的建设工期。 4D形象进度子系统 根据系统的功能组成,4D-GCPSU系统可以分为创建3D模型、创建WBS和进度计划、3D工程构件的创建及管理、创建4D模型、4D进度管理、4D资源管理、OpenGL图

仰拱栈桥方案

仰拱栈桥施工方案 一、工程概况 1、隧道设计技术标准 (1) 公路等级:双向四车道高速公路 (2) 设计速度:80km/h (3) 设计荷载:公路-I级 (4) 隧道建筑限界,见表1 表1 隧道建筑限界表 (5)洞内清洁:纵向通风时,CO允许浓度:隧道长度L≤1000m δ=300PPm,隧道长度L≥3000m δ=250PPm(其余内插取值),烟雾允许浓度:0.0065m-1。 2、隧道设置 本隧道按长度划分属长隧道 表2 隧道一览表 寒岭界隧道

隧道全长2820m,隧道为双洞单向交通隧道,左右洞测设线间距21.0~37.5m,其中炎陵端K87+580~K87+800、汝城端K90+300~K90+400测设线间距小于25m,按分离式隧道设计,施工按小净距方法施工。 炎陵端起隧道平面上位于R=1600m+R1800m的S曲线上,汝城端隧道左线为直线段接R=1000m的缓和曲线段,右线为直线段接R=1200m的缓和曲线段。左右洞路面最大横坡均为3%,在反向超高段进行了超高变化段的设置。 隧道纵面左线、右线纵坡从炎陵端至汝城端均为2.85%的下坡,坡长在隧道范围内为2820m。 3、施工进度 随着施工进度要求,我合同段各隧道即将进入仰拱部位的施工,为了保证仰拱施工连续进行并且隧道开挖出渣和洞内材料运输不受仰拱开挖的影响,采用在仰拱开挖槽上搭设仰拱栈桥,隔跨跳跃施工,待已浇筑的仰拱混凝土强度满足通车强度要求后,即强度达到设计强度的100%,方可移走栈桥,到下一隧底开挖槽上,依次循环使用。 二、仰拱栈桥的选型 按照我公司以往施工经验和现场施工实际情况,并按照尽早开挖尽快封闭成环的原则,一般仰拱施工段落为6米。并保证栈桥结构的强度刚度满足整个隧道施工循环内相关车辆通行的要求。拟选择采用2根25a#工字钢上下翼缘焊接为一组,栈桥每边采用三组并排,顶部用Φ22螺纹钢筋连成整体,纵向间距10~15cm,以提高栈桥结构的

牢固树立成本意识-加强成本管理控制(青岛海湾大桥推荐材料)

牢固树立成本意识,努力控制项目成本 ——青岛海湾大桥项目成本管理工作小结 青岛海湾大桥位于胶州湾北部,起于青岛侧胶州湾高速公路李村河大桥北200m处,设李村河互通与胶州湾高速相接,终于黄岛侧胶州湾高速东1km处,顺接在建的南济青线,中间设立红岛互通与拟建的红岛连接线相接,主线全长26.767km,其中跨海大桥25.880km,黄岛侧接线长0.827km,红岛连接线长1.3km。我集团公司承建的第四合同段起点为红岛互通西终点,顺接红岛互通内主线非通航孔桥,全长为3300m。主要工程量有:桩基420根20036米,承台105个,墩柱105个,全部工程混凝土总量8万立方,本工程投标价2.52亿元。合同开工日期为2007年5月1日,竣工日期为2009年8月31日,总工期27个月。目前已完成桩基258根,承台23个,立柱13个,完成投资11000万元。 该项目成本控制的主要难点表现在:风险高、投入大、要求高、困难多。工程位于胶州湾内的海面上,受潮、浪、流、风、雾等恶劣条件影响较大,桥梁施工作业受到大风和大浪的影响时间长范围大,施工风险大施工安全要求高;所有分项工程全部为水上施工,水上专用的设备投入大且工程量清单中对栈桥工程没有专项报价,前期设备物资投入非常大,工程投入不能得到及时计量,需工程全部完成才能从分摊的工程量中计量回来;工程质量和环保要求特别高,作为跨海大桥,结构物耐久性和耐腐蚀性要求高,环境保护、水土保持是施工安排必须考虑的基本出发点,也是施工过程中的控制点;工程的主要难点是水中桩基和承台的施工,各个施工环

节环环相扣。 针对本工程的实际特点,项目部以降低项目成本,追求最佳经济效益为目的,坚决执行集团公司制定的成本管理办法,牢固树立成本意识,努力控制项目成本,已初步取得了良好成效。 根据集团公司项目责任成本管理的要求,在集团公司的正确领导下,四公司成本管理部加强引导,通过树立全员“大成本”意识,努力控制项目成本,确保了项目成本管理工作有序有效的开展。青岛海湾大桥主要成本管理工作小结如下: 一、树立“大成本”意识,是搞好成本管理的前提。 利润=收入-成本,往往没有成本投入就没有收入产出,因此要想获得利润的最大,还是要从成本管理入手,争取最低成本来获得利润最大化。利润是企业追求的最终目标,因此没有成本管理与控制,就没有项目的成功与发展。 我们项目上从项目经理书记到施工操作人员都加强“大成本”意识教育,了解成本降低10%,利润可能就增加100%甚至200%,明确工资收入和奖金兑现全部与成本挂钩。通过意识教育带动行动操作,充分发挥全员成本管理的自觉性;通过制定与考核发挥全员成本管理的积极性、主动性。 二、建立健全责任成本管理体系,强化成本管理工作流程,确保成本管理有序有效开展。 在公司责任成本核算预算的基础下进行责任预算的二次分解,建立了以项目经理项目书记为组长的项目责任成本管理小组。并设立了工程进度管理控制中心(负责人:XXX)、工程质量管理控制中心(负责人:XXX)、

仰拱栈桥验算

一、概况 为确保隧道施工畅通,并保证掌子面与仰拱同时施工的需要,经研究决定在施工仰拱时,临时架设一副栈桥。 从结构可靠性、经济性及施工工期要求等多方面因素综合考虑,仰拱栈桥采用8片I40a工字钢作为主梁,4片为一组,两组工字钢间净距60cm,工字钢上横向满铺Φ22螺纹钢(间距0.05m)。设计栈桥承载不小于40吨(不含栈桥自重,隧道施工用车中最大重量为35吨)。 二、荷载分析 根据现场施工需要,栈桥承受荷载主要由桥梁自重荷载q,及车辆荷载P两部分组成,其中车辆荷载为主要荷载。如图1所示: 图1 为简便计算方法,桥梁自重荷载按均布荷载考虑,车辆荷载按集中荷载考虑。以单片工字钢受力情况分析确定q、P值。 1、q值确定 由资料查得I40a工字钢每米重67.598kg,Φ22螺纹钢每米铺设20根,每根长1.2m,Φ22螺纹钢每米铺设重71.52kg。单片工字钢自重按3.419KN/m计算,即q=3.4191KN/m。 2、P值确定 根据施工需要,栈桥要求能通过后轮重40吨的大型车辆,及单侧

车轮压力为200KN ,单片I40a 工字钢尺寸如图2: 如单侧车轮压力由4片梁同时承受, 因车轮单个宽 30cm ,因此必须求出车 轮中心点处最大压力 m ax f ,I40a 工字钢翼板 宽14.2cm ,每片工字钢 间横向间距为21cm ,由 于上方Φ22螺纹钢铺满桥面,因此单侧车轮同 时均匀的作用于4片工字钢上。而f 按图3所示转换为直线分布,如图4: f max max f f f f 图4 由图4可得到m ax f =F/4=50KN 取50KN 。 由于栈桥设计车辆匀速通过,车辆对桥面的冲击荷载较小,故冲击荷载不考虑,P=50KN 。 三、结构强度检算 由图1所示单片工字钢受力图示,已知q=3.419KN/m ,P=50KN ,工字钢计算跨径l =10m ,根据设计规范,I40a 工字钢容许弯曲应力图3F f

胶州湾跨海大桥资料

青岛海湾大桥 青岛海湾大桥又称胶州湾跨海大桥,它是国家高速公路网G22青岛/url到兰州高速公路的起点段,是山东省“五纵四横一环”公路网上框架的重要组成部分,是青岛市规划的胶州湾东西两岸跨海通道“一路、一桥、一隧”中的“一桥”。起自青岛主城区海尔路经红岛到黄岛,大桥全长千米,投资100亿,历时4年,全长超过我国杭州湾跨海大桥与美国切萨皮克跨海大桥,是当今世界上最长的跨海大桥。大桥于2011年6月30日全线通车。是我国建桥者自行设计、施工、建造,具有独立知识产权的特大跨海大桥。中国与世界建桥史又翻开了崭新的一页。 建筑简介 青岛海湾大桥,东起青岛主城区黑龙江路杨家群入口处,跨越胶州湾海域,西至黄岛红石崖,(一期工程)路线全长新建里程公里,(二期工程12公里。)其中海上段长度公里,青岛侧接线749 米、黄岛侧接线米、红岛连接线长公里。工程概算投资亿元。2010年12月22日青岛海湾大桥主桥贯通,大桥于2011 年6月30号下午14点正式通车。 青岛海湾大桥工程包括三座可以通航的航道桥和两座互通立交,以及路上引桥、黄岛侧接线工程和红岛连接线等,全长公里,为世界第一跨海长桥。大桥为双向六车道高速公路兼城市快速路八车道,设计行车时速80公里,桥梁宽35米,设计基准期100年。 大桥从1993年4月开始规划研究。2007年5月全面开工以来,共用掉钢材约45万吨,相当于一个年钢产量过千万吨的特大型钢企一个多月的钢产量;共需混凝土约230万方。目前海湾大桥已完成投资84亿多元,占投资总额的88%。青岛海湾大桥(北桥位)是国家高速公路路网规划中的“青岛至州高速(M36)”青岛段的起点,也是我市道路交通规划网络布局中,胶州湾东西岸跨海通道中的“一路、一桥、一隧”重要组成部分。海湾大桥的建设,将实现半岛城市群区域内各中心城市之间形成“四小时经济圈”,区域内中心城市与本地市内各县市形成“一小时经济圈”的道路网络规划目标。本项目由山东高速投资经营,与胶州湾高速捆绑经营。山东高速集团投资建设的青岛海湾大桥是我国目前国有独资单一企业投资最大规模的交通基础设施项目,是我国北方冰冻海区域首座特大型桥梁集群工程,加上引桥和连接线,总体规模为世界第一大桥,工程全长超过38公里,一期工程全长公里,二期工程公里。本桥为双向六车道高速公路兼城市快速路8车道,设计车速为80公里/小时,桥梁宽度35米,设计基准期为100年。 建筑结构 大沽河航道桥: 据介绍,整个海湾大桥工程包括沧口、红岛和大沽河航道桥、海上非通航孔桥和路上引桥、黄岛两岸接线工程和红岛连接线工程,李村河互通、红岛互通以及青岛、红岛和黄岛三个主线收费站及管理设施。据负责大沽河航道桥施工的青岛海湾大桥第七合同段工作人员介绍,大沽河航道桥的主塔为独塔,高达149米,是海湾大桥上的最高塔。航道桥建成后,主塔将成为大沽河航道桥的主要标志物,而大沽河航道桥也会因此成为海湾大桥的标志性建筑物。据测算,大沽河航道桥箱梁由22种55个钢箱梁装焊组成,每个标准梁段长12米、宽47米、高米,其中最大梁段重达1000余吨,这在国内跨海大桥上是首次采用。 自锚式悬索桥: 悬索桥指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。现代悬索桥的悬索一般均支承在两个塔柱上。塔顶设有支承悬索的鞍形支座。承受很大拉力的悬索的端部通过锚碇固定在地基中,个别也有固定在刚性梁的端部者,称为自锚式悬索桥。

青岛海湾大桥工程跟踪审计实施方案报告0812

青岛海湾大桥工程 跟踪审计实施方案 山东鲁咨工程咨询有限公司 二○○八年十二月

青岛海湾大桥工程 跟踪审计实施方案 一、项目情况简介 1、青岛海湾大桥概况 青岛海湾大桥是国家高速公路网青岛到兰州高速公路的起点段,是山东省“五纵四横一环”公路网上框架的重要组成部份,是青岛市规划的胶州湾东西两岸跨海通道“一路、一桥、一隧”中的“一桥”。大桥主线工程起于青岛侧环胶州湾高速公路李村河大桥北 200 米处,终于黄岛侧胶州湾高速东1 公里处 . 顺接济青南线设计起点,中间设立红岛互通立交与红岛连接线相接。主线全长28.047 公里,其中跨海大桥 25.171 公里,青岛侧接线 749 米、黄岛侧接线 827.021 米、红岛连接线长 1.3 公里。主线桥宽35米,双向六车道,设计行车速度 80 公里 / 小时,工程概算投资90.4 亿元。主要建设内容包括沧口航道桥、红道航道桥、大沽河航道桥、海上非通航孔桥和陆上引桥,红岛、黄岛和青岛岸接线工程,红岛互通立交、李村河互通立交工程以及主线工程相应的交通工程。其中红岛互通立交桥为我国首座海上互通立交桥,设计科学,造型独特。 该项目 2005 年 3 月获得国家发改委核准同意建设,并授权青岛市发改委 2005 年 9 月批准了主线工程的初止步设计。

工期目标:主线工程建设期 3.5 年,其它主体工程 3 年,沥青混凝土桥面、三大系统、交通工程等 0.5 年。2010 年底建成通车。 投资计划完成情况为: 2007 年计划完成投资 206158 万元,占总投资的 22.70% 。 2008 年计划完成投资 265116 万元,占总投资的 29.19% 。 2009 年计划完成投资 287209 万元,占总投资的 31.63% 。 2010 年计划完成投资 84276 万元,占总投资的 9.28% 2、我公司所属项目概况: 根据项目划分,由我公司负责跟踪审计的大桥项目为: 第八合同段(黄岛侧) 本合同段起点里程桩号K28+200,终点里程桩号K30+650,长度为 2450m,墩号范围为325#~372#墩。基础采用群桩基础,墩身采用花瓶墩,上部结构为移动模架现浇连续箱梁,共计12联,其中第一联为5× 50m,第二~十二联为4× 50m。 监理单位:山东东泰交通建设监理咨询有限公司 施工单位:中国路桥工程有限责任公司 合同工期:2007年5月—2010年1月 第九合同段(黄岛侧) 本合同段的起讫桩号为K33+200~K34+947.319,其中海湾大桥部分为K33+200~K34+120,共长 920m。路基起讫桩号K34+120~K34+947.319,其间在K34+815.627处有2×25+2× 28米4跨预应力钢筋混凝土箱梁分离式立交1座,K34+170处直径 1.5米圆管涵

青岛海湾大桥混凝土耐久性设计方案研究

青岛海湾大桥混凝土耐久性设计方案研究 朱晓庆’,王耀青’ (1.青岛海湾大桥工程项目建设办公室,山东青岛266108; 2.中交第一公路勘察设计研究院,陕西西安710075) 摘要:青岛海湾大桥整体耐久性要求很高(设计使用年限为l00a),所处环境较为恶劣(海洋环境并遭受冻融等外部环境荷载),混凝土结构的耐久性很难通过单一措施保证,这就必然要求根据具体的环境条件和设计要求,有机组合多种技术措施,以保证整体耐久性达到设计要求。根据青岛海湾大桥所处的特殊环境,介绍其对混凝土耐久性影响的作用机理,从而采取相应的耐久性设计方案,为今后特殊环境下桥梁混凝土结构耐久性方案设计提供参考。 关键词:耐久性;高性能混凝土;青岛海湾大桥 中图分类号:U448.35 文献标识码:B 1 工程概况 青岛海湾大桥是青岛市道路交通网络布局中胶州湾东西岸跨海通道的重要组成部分。青岛海湾大桥设计起点位于青岛侧胶州湾高速公路李村河大桥北200m处,北距环太原路立交720m,设李村河互通立交与胶州湾高速公路相接;终点位于黄岛侧胶州湾高速公路东]km处,顺接济青南线设计起点;中间设立红岛互通与拟建的红岛连接线相接。路线全长26.707km,其中跨海大桥25.880km。 青岛海湾大桥全线设立三座主航道桥、两座互通立交,其中非通航孔桥均为50m或60m跨径的预应力混凝土连续箱梁或刚构,基础型式为群桩和独桩独柱两种,在互通范围内匝道桥分别为30m、50m左右不同跨径的预应力混凝土连续箱梁。 2 桥梁工程耐久性设计要求 所谓混凝土的耐久性,是指在使用过程中,在内部的或外部的,人为的或自然的因素作用下,混凝土保持自身工作能力的一种性能。或者说结构在设计使用年限内,抵抗外界环境或内部本身所产生的侵蚀破坏作用的能力。 青岛海湾大桥桥梁工程按照l00a设计基准期设计,对混凝土结构工程而言,要求使用寿命达到100a。 3 环境条件调查分析 影响混凝土耐久性的因素有混凝土结构的内在因素和外在环境因素两个方面。外在环境因素主要指气候、潮湿、高温、氯离子侵蚀、化学介质(酸、酸盐、海水、碱类等)侵蚀、冻融、磨蚀破坏等。影响混凝土耐久性的外在环境因素与工程所处的环境条件有着密切的关系,环境条件调查分析的目的就是调查青岛海湾大桥桥梁工程混凝土结构所在地域环境条件,分析影响其耐久性的主要因素。 4 混凝土工程耐久性影响因素及其作用机理 影响混凝土结构使用寿命的荷载可分为两大类,第一类是物理外力,如疲劳荷载、风荷载、海浪和水流冲击、地震力及意外事故撞击等等;第二类主要是化学或物理化学作用力,如:腐蚀、碳化、冻融、碱骨料反应等。物理外力荷载主要由结构设计解决,本方案主要考虑化学或物理化学作用力荷载对耐久性的影响。 一般地,钢筋混凝土的破坏因素主要有:钢筋锈蚀作用、碳化作用、冻融循环作用、碱一集料反应、溶蚀作用、盐类侵蚀作用、冲击磨损等机械破坏作用。 对照环境负荷和腐蚀特点,青岛海湾大桥桥梁工程的环境条件属于典型的北方海洋性环境,其耐久性的主要影响因素是:首先,其处于北方地区,每年均有2—3个月左右的冰期,存在冻融循环引起混凝土破坏的可能;其次,从化学侵蚀和腐蚀方面,主要存在SO “侵蚀的混凝土腐蚀作用和C1 引起的 钢筋锈蚀作用。 4.1 影响因素 对于混凝土的耐久性问题,通常并不是冻融、化学腐蚀和碳化性能等单一破坏因素作用下的耐久性。在实际工程中,结构混凝土的耐久性问题是一种在荷载的作用下碳化、CI 侵蚀、硫酸盐腐蚀或冻融等多种

隧洞设计实例

隧洞设计实例 一、隧洞的基本任务和基本数据 1、隧洞的基本任务 泄水隧洞的进口全部淹没在水下,进口高程接近河床高程,其担负的任务如下: (1) 预泄库水,增大水库的调蓄能力。 (2) 放空水库以便检修。 (3)排放泥沙,减小水库淤积。 (4) 施工导流。 (5) 配合溢洪道渲泄洪水。 2、设计基本数据 (1) 洞壁糙率泄洪洞采用钢筋砼衬砌,n=0.014~0.017,考虑到本隧洞施工质量较好,故取较小值n=0.014。 (2) 水利计算成果见表1。 二、隧洞的工程布置 1、洞型选择 由于段村坝址为石英砂岩,地质条件较好,所以采用圆形有压隧洞,圆形断面的水流条件和受力条件比较好,并且可以充分利用围岩的弹性抗力,从而减小衬砌的工程量,降低施工的难度和造价。同时有压隧洞水流较平顺、稳定,不易产生不利流态。 2、洞线位置 洞轴线布置在右岸,这样出口水流对段村无影响,进口山势较陡,进流条件好,洞线为直线,较短,工程量小又利于泄洪。 3、工程布置 泄洪隧洞由进口段、洞身段、出口段三部分组成。 (1)进口型式 由于进口部位山体岩石条件较好,故采用竖井式进口,在岩体中开挖竖井,将闸门放在竖井底部,在井的顶部布置启闭机及操作室、检修平台,竖井式进口结构简单,不受风浪影

响,地震影响也较小,比较安全。 (2) 进口段 包括进口喇叭口段、闸室段、通气孔、渐变段等。 1) 进口喇叭口段 为了与孔口的水流型态相适应,使水流平顺,避免产生不利的负压和空蚀破坏,同时尽量减少局部水头损失,提高泄流能力,在隧洞进口首部,其形状应与孔口锐缘出流流线相吻合,一般顺水流方向做成三向收缩的矩形断面喇叭口形,其收缩曲线为1/4椭图曲线,顶面椭圆方程为: 1)5.33.0(5.32 222 =?+y x ,用下列坐标绘制顶面曲线,见表1。 表1 侧面曲线方程为:1)5.32.0(5.32 2=?+x ,用下列坐标绘制侧面曲线,见表2。 表2 2) 进口闸室段 闸孔尺寸为3.5×3.5m ,闸室段长度参照工程经验取6.0m ,在闸门上端设置操作室,后设工作桥与坝面相连,桥面高程为365.81m ,与坝顶路面高程一致,在操作室与闸室之间设置检修平台,平台高程在正常高水位360.52m 以上,取361.50m 。 闸门用5.0×4.0m 的平面钢闸门,闸门槽宽度为1.0m ,深度为75cm ,由于高速水流通过平面闸门闸孔时,水流在门槽边界突变,容易发生空化水流,致使门槽及附近的边墙或底板发生空蚀。为此,将门槽的下游壁削去尖角,用半径为R=10cm 的圆弧代替,并做成1:12的斜坡,错距采用8cm 。 3) 通气孔 在闸室右部设置通气孔,其作用是在关闭检修门,打开工作门放水时,向孔中充气,使洞中水流顺利排出;检修完毕后,关闭工作门,向检修闸门和工作闸门之间充水时,排出洞中空气,使洞中充满水。通气孔的断面积一般取泄水孔断面积的0.5%~1%,此 泄水孔的断面积为9.62m 2 )4 5.314.3(2 ?,所以通气孔取0.25×0.25m ,通气孔的进口必须与闸门启闭机室相分离,以免在充、排气时影响工作人员的安全。 4)渐变段 为使水流平顺过渡,防止产生负压和空蚀,设置渐变段,由于渐变段施工复杂,故不宜太长,但是为使水流过渡平顺,又不能太短,一般用洞身直径的2~3倍,取渐变段长度为8.0m 。 根据本隧洞的任务,其进口高程应设置得低一些,河床的平均高程为340m ,这样既便于施工期导流,降低围墙高程,又可在运用期泄水,力争一洞多用,以求隧洞施工方便,运用安全,造价低廉。 (3) 洞身段 考虑到所选洞线的地形、地质情况,并运用情况,洞线长为230m ,洞身段长198.5m ,为了便于施工时出碴和检修时排除积水,坡降i =1/500,顺坡。 初拟洞径:按管流公式计算,公式为 02gH w Q μ=; 式中 μ—流量系数,μ=0.74~0.77 ,这里取0.74; w —出口断面面积(m 2 ); H 0—作用于隧洞的有效水头;H 0=库水位一出口顶部高程。 分别列表(3)计算设计及校核洪水位时所需的洞径:

隧道9米仰拱栈桥施工方案(受力及稳定性验算)

贵阳市轨道交通1号线第七工作段 火沙区间暗挖隧道仰拱栈桥施工方案 编制: 审核: 批准: 中铁十五局集团贵阳轨道交通1号线第七工作段项目经理部 年月日

仰拱栈桥施工方案 一、工程概述 随着施工进度要求,我标段各隧道即将进入仰拱部位的施工,为了保证仰拱施工连续进行并且隧道开挖出渣和洞内材料运输不受仰拱开挖的影响,故在仰拱开挖槽上搭设仰拱栈桥。隔跨跳跃施工,待已浇筑的仰拱混凝土强度满足通车强度要求后,即强度达到设计强度的100%,方可移走栈桥,到下一隧底开挖槽上,依次循环使用。 二、仰拱栈桥的选型 按照我公司以往施工经验和现场施工实际情况,并按照尽早开挖尽快封闭成环的原则,一般仰拱施工段落为6米。根据现场工字钢的供应情况,并保证栈桥结构的强度刚度满足整个隧道施工循环内相关车辆通行的要求。拟选择采用2根I20b工字钢上下翼缘焊接为一组,栈桥每边采用三组并排,顶部用Φ22螺纹钢筋连成整体,纵向间距10~15cm,以提高栈桥结构的平面内、外强度和刚度。纵向两端做成1m长坡道方便车辆通行,两幅栈桥横向间距根据车轮轮距布置,保证车轮压在栈桥中部。钢材长度为工字钢标准长度9米。净跨度按6m进行计算,如图a所示: 栈桥纵断面图 栈桥横断面图

三、仰拱栈桥结构计算 栈桥结构为两部各6根I20b工字钢并排布置作为纵梁,每两根工字钢上下翼缘板通长焊接,横向顶部用Φ22螺纹钢筋连接,保证在车轮荷载作用下纵梁能够共同受力,并且能够提高栈桥桥面的横向刚度。 设计荷载按出渣车(东风金刚4100)40t重车,前后轮轴距为3.2m,前轴分配总荷载的1/3,后轴为2/3,左右侧轮各承担1/2轴重,工字钢为整体共同承担重车荷载,工字钢自重、按1.15系数设计,动载及安全系数设计为1.1。 1、力学简化 梁两端都有转动及伸缩的可能,故计算简图可采用简支梁(如图b)。 由于截面上的弯矩随荷载的位置变化而变化的,因此在进行结构强度计算时,应使在危险截面上即最大弯矩截面上的最大正应力不超过材料的弯曲许用应力[σ]故需确定荷载的最不利位置,经荷载不同位置处的弯矩比较在检算最大正应力时,应取P/3荷载在跨中位置(如图c): 计算最大剪应力时,取荷载靠近支座位置(如图d):

青岛海湾大桥桥墩施工方案

青岛海湾大桥桥墩施工方案 青岛海湾大桥接线工程第一合同段 桥墩施工方案 编制依据:《青岛海湾大桥青岛端接线工程施工图》 《公路桥涵施工技术规范》 《市政桥梁工程质量检验评定标准》 《市政工程施工安全技术操作手册》

一、工程概况 本标段桥墩共分为2m圆形(68个)、1.2m圆形(6个)、2*2.7m 圆端型(60个)、1.2*2.5m圆端型(12个)四种形式,墩高从3.196米到19.65米不等。6#、7#、8#主线桥及SA1#-SA3#匝道桥墩柱位于李村河河道内,其他桥墩均位于李村河河岸。由于墩柱较高,桥墩除了满足其设计要求保证内在质量外,外观质量也为施工的重点。二、工期计划安排 结合标段总体工期安排,墩柱具体施工进度时间安排如下: 1#主桥:2010年2月25日~2010年4月30日 2#主桥:2010年4月15日~2010年6月15日 3#、4#、5#主桥:2010年4月25日~2010年6月30日 SD匝道桥:2010年5月15日~2010年10月31日 6#、7#、8#主桥:2010年3月1日~2010年4月31日 SA1-SA3匝道:2010年3月25日~2010年4月30日 SA4#、SA5#匝道:2010年7月10日~2010年8月31日三、施工方案 承台施工前,对墩身中心进行测量控制,定出墩身控制线和标高控制点以及墩身钢筋笼预埋承台内准确位置。对承台与墩身的交接面进行凿毛,做好施工缝的处理;在承台内按设计要求埋设墩身钢筋及必要的固定墩身模板用的钢筋;搭设吊装模板用双排脚手架及人行爬梯,脚手架采用碗口式脚手杆件组装。 因6#、7#、8#主桥位于河道内,SA1#-SA3#匝道桥跨越主河道,

隧道仰拱栈桥设计计算实例

按照我公司以往施工经验和现场施工实际情况,并按照尽早开挖尽快封闭成环的原则,一般仰拱施工段落为6米。根据现场工字钢的供应情况,并保证栈桥结构的强度刚度满足整个隧道施工循环内相关车辆通行的要求。拟选择采用2根25a#工字钢上下翼缘焊接为一组,栈桥每边采用三组并排,顶部用Φ22螺纹钢筋连成整体,纵向间距10~15cm ,以提高栈桥结构的平面内、外强度和刚度。纵向两端做成1m 长坡道方便车辆通行,两幅栈桥横向间距根据车轮轮距布置,保证车轮压在栈桥中部。钢材长度为工字钢标准长度12米。净跨度按8m 进行计算,如图a 所示: 25a 工字钢小里 程端图a A B 大里程端 12m 8m 2m 2m 单位: m 工字钢间上下翼缘板采用 通长焊接,提高整体性. 三、仰拱栈桥结构计算 栈桥结构为两部各6根Ⅰ25a 工字钢并排布置作为纵梁,每两根

工字钢上下翼缘板通长焊接,横向顶部用Φ22螺纹钢筋连接,保证在车轮荷载作用下纵梁能够共同受力,并且能够提高栈桥桥面的横向刚度。 设计荷载按出渣车40t 重车,前后轮轮距为4.5m ,前轴分配总荷载的1/3,后轴为2/3,左右侧轮各承担1/2轴重,工字钢为整体共同承担重车荷载,工字钢自重、按1.15系数设计,动载及安全系数设计为1.1。 1、力学简化 梁两端都有转动及伸缩的可能,故计算简图可采用简支梁(如图b )。 A 图b 单位:cm 由于截面上的弯矩随荷载的位置变化而变化的,因此在进行结构强度计算时,应使在危险截面上即最大弯矩截面上的最大正应力不超过材料的弯曲许用应力[σ]故需确定荷载的最不利位置,经荷载不同位置处的弯矩比较在检算最大正应力时,应取P/3荷载在跨中位置(如图c ):

青岛海湾大桥桥墩工程施工组织设计方案

海湾大桥接线工程第一合同段 桥墩施工方案 编制依据:《海湾大桥端接线工程施工图》 《公路桥涵施工技术规》 《市政桥梁工程质量检验评定标准》 《市政工程施工安全技术操作手册》 一、工程概况 本标段桥墩共分为2m圆形(68个)、1.2m圆形(6个)、2*2.7m 圆端型(60个)、1.2*2.5m圆端型(12个)四种形式,墩高从3.196米到19.65米不等。6#、7#、8#主线桥及SA1#-SA3#匝道桥墩柱位于村河河道,其他桥墩均位于村河河岸。由于墩柱较高,桥墩除了满足其设计要求保证在质量外,外观质量也为施工的重点。 二、工期计划安排 结合标段总体工期安排,墩柱具体施工进度时间安排如下: 1#主桥:2010年2月25日~2010年4月30日 2#主桥:2010年4月15日~2010年6月15日 3#、4#、5#主桥:2010年4月25日~2010年6月30日 SD匝道桥:2010年5月15日~2010年10月31日 6#、7#、8#主桥:2010年3月1日~2010年4月31日 SA1-SA3匝道:2010年3月25日~2010年4月30日

SA4#、SA5#匝道:2010年7月10日~2010年8月31日三、施工方案 承台施工前,对墩身中心进行测量控制,定出墩身控制线和标高控制点以及墩身钢筋笼预埋承台准确位置。对承台与墩身的交接面进行凿毛,做好施工缝的处理;在承台按设计要求埋设墩身钢筋及必要的固定墩身模板用的钢筋;搭设吊装模板用双排脚手架及人行爬梯,脚手架采用碗口式脚手杆件组装。 因6#、7#、8#主桥位于河道,SA1#-SA3#匝道桥跨越主河道,为减小汛期施工影响,确保6#、7#、8#主桥、匝道SA1#-SA3#桥、1#主桥在2010年5月底箱梁施工完,并落架清理完河道。6#、7#、8#主桥、匝道SA1#-SA3#桥、1#主桥墩柱同步施工,项目部计划6#、7#、8#主桥投10套墩柱模板,匝道2套墩柱模板,1#主桥2套墩柱模板。2#、3#、4#、5#主桥及SD匝道墩柱紧跟6#、7#、8#主桥、SA匝道平行推进。 全桥墩柱拟配备14套墩柱模板循环进行施工。墩柱模板采用工厂制作定型大钢模板,模板与加固背带焊接为一体,按墩身高度确定每节高0.5米、1米及3米,采用汽车吊进行拼装,墩身四角对称设钢丝绳拉紧锚定。 墩柱混凝土采用商品混凝土,汽车吊吊2m3料斗浇注,墩柱一次浇筑成型,分层振捣,分层厚度不超过30cm,插入式振捣器捣固。由于墩柱较高,为使混凝土下落过程中减速以防止混凝土离析,混凝土浇注时加设串筒。附:墩柱模板设计方案图及力学检算

单线铁路隧道自行式仰拱栈桥带模板施工工法

单线铁路隧道自行式仰拱栈桥带模板施工工法随着我国铁路工程技术高速发展以及铁路线路标准的提高,铁路线路选线中不可避免的选择隧道方式穿越复杂地形,使隧道在线路中的占比越来越大,长大隧道越来越多,施工进度成为隧道施工的关键重点工作。施工组织中工装设备配套技术成为隧道施工进度及成本控制的决定性因素。隧道施工中二衬仰拱施工成为施工进度控制中的关键一环,对施工进度起着关键性控制作用。一般隧道施工中还受安全步距规定的影响。 2、工法特点 2.1 施工干扰少,作业空间大,工效高。 2.2 一次浇筑长度长,矮边墙线型好,混凝土能达到内实外美的质量要求。 2.3 端部模板封堵次数少,减少施工缝用止水带等材料,减少人工费及材料费。 2.4 施工循环时间短,施工进度快。 3、适用范围 适用于单线铁路隧道二衬有仰拱隧道施工,也可用于无仰拱隧道施工。双线隧道也可作为参考。 4、工艺原理 根据以前施工的短栈桥及整体仰拱模板优化衍变而来,仰拱长栈桥由主桥长度30m、前后桥、矮边墙整体模板及行走系统组成,根据走行方式不同有后驱液压中支腿滑动式和前履带行走式。栈桥中间采用液压式支腿支撑可滑动栈桥,后端安装驱动轮前推移动栈桥。仰拱小边墙两侧模板加工为一个整体,前端行走小车挂在栈桥的纵梁内侧(兼轨道)上,后端配置驱动轮,置于水沟槽内,前后驱动前移。 栈桥可一次前行约27m,分段进行清底绑扎仰拱钢筋,小边墙整体模板前移定位,安装封端模板,浇筑混凝土养护,拆模前移完成一个施工循环。 5、施工工艺流程和操作要点 5.1 施工工艺流程 仰拱及填充施工工艺流程,见图5.1。

图5.1 仰拱及填充施工工艺流程图 5.2 操作要点 5.2.1隧底清渣 隧道洞身开挖按设计及规范要求需进行仰拱施工时,先采用挖掘机配合自卸汽车进行仰拱初始段隧底清渣,然后组织仰拱栈桥组装。 5.2.2栈桥行走 行走时伸缩支腿支撑(四支腿结构保稳定)于仰拱基面上,前支腿收放,后端驱动轮驱动栈桥前移,栈桥主重在伸缩支腿滑动前移,栈桥前进到位后,前端受力支腿支撑在仰拱上,收缩滑动支腿完成行走。行走可一次或多次前进移动完成栈桥行走。整体仰拱(矮边墙)模板前端行走小车吊挂在行走轨道(栈桥主梁内侧)上,矮边墙后置驱动与行走小车同时向前驱动仰拱(矮边墙)模板前移,横向移动矮边墙整体模板定位,安装封端模板安装止水带即可进行仰拱混凝土浇筑。

隧道仰拱栈桥施工方案

仰拱栈桥方案 编制: 复核: 审批: 云桂铁路Ⅳ标段中铁十局项目部三分部二0一0年九月 仰拱栈桥施工方案

一、工程概述 随着施工进度要求,我标段各隧道即将进入仰拱部位的施工,为了保证仰拱施工连续进行并且隧道开挖出渣和洞内材料运输不受仰拱开挖的影响,故在仰拱开挖槽上搭设仰拱栈桥。隔跨跳跃施工,待已浇筑的仰拱混凝土强度满足通车强度要求后,即强度达到设计强度的100%,方可移走栈桥,到下一隧底开挖槽上,依次循环使用。 二、仰拱栈桥的选型 按照我公司以往施工经验和现场施工实际情况,并按照尽早开挖尽快封闭成环的原则,一般仰拱施工段落为6米。根据现场工字钢的供应情况,并保证栈桥结构的强度刚度满足整个隧道施工循环内相关车辆通行的要求。拟选择采用2根25a#工字钢上下翼缘焊接为一组,栈桥每边采用三组并排,顶部用Φ22螺纹钢筋连成整体,纵向间距10~15cm ,以提高栈桥结构的平面内、外强度和刚度。纵向两端做成1m 长坡道方便车辆通行,两幅栈桥横向间距根据车轮轮距布置,保证车轮压在栈桥中部。钢材长度为工字钢标准长度12米。净跨度按8m 进行计算,如图a 所示: 图a 单位: m

工字钢间上下翼缘板采用 通长焊接,提高整体性. 三、仰拱栈桥结构计算 栈桥结构为两部各6根Ⅰ25a 工字钢并排布置作为纵梁,每两根工字钢上下翼缘板通长焊接,横向顶部用Φ22螺纹钢筋连接,保证在车轮荷载作用下纵梁能够共同受力,并且能够提高栈桥桥面的横向刚度。 设计荷载按出渣车40t 重车,前后轮轮距为4.5m ,前轴分配总荷载的1/3,后轴为2/3,左右侧轮各承担1/2轴重,工字钢为整体共同承担重车荷载,工字钢自重、按1.15系数设计,动载及安全系数设计为1.1。 1、力学简化 梁两端都有转动及伸缩的可能,故计算简图可采用简支梁(如图b )。 A 图b 单位:cm 由于截面上的弯矩随荷载的位置变化而变化的,因此在进行结构强 度计算时,应使在危险截面上即最大弯矩截面上的最大正应力不超过材料的弯曲许用应力[σ]故需确定荷载的最不利位置,经荷载不同位置处的弯矩比较在检算最大正应力时,应取P/3荷载在跨中位置(如图c ):

相关主题
文本预览
相关文档 最新文档