当前位置:文档之家› 导数中含参数的解题策略

导数中含参数的解题策略

导数中含参数的解题策略
导数中含参数的解题策略

导数中含参数的讨论策略

导数是研究函数性质的一种重要工具,利用导数可判断函数单调性、极值、最值等,其中渗透并充分利用着构造函数、分类讨论、转化与化归、数形结合等重要思想方法,导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力。而含参数的导数问题是近年来高考的难点和热点,本文着重就含参数导数的几种常见的解题策略加以归纳.

一.求导后,导函数的解析式为一次函数y=kx+b ,如k 不定就分清况讨论k>0,k=0,k<0,然后导函数y=kx+b 为零时有无实根,根是否落在定义域内,

(2008高考浙江卷理科)已知a 是实数,函数(

))f x x a -

(1)求函数()f x 的单调区间;

解:(Ⅰ)函数的定义域为[)0,+∞,(

))'30a x f x x ?

?- ?

===>,由'()0f x =得3

a

x =

。 考虑

3

a 是否落在导函数'

()f x 的定义域()0,+∞内,需对参数a 的取值分0a ≤及0a >两种情况进行讨论。

(1) 当0a ≤时,则'

()0f x >在()0,+∞上恒成立,所以()f x 的单调递增区间为

[)0,+∞。

(2) 当0a >时,由'

()0f x >,得3

a x >

;由'

()0f x <,得03a x <<。

因此,当0a >时,()f x 的单调递减区间为0,3a ??????,()f x 的单调递增区间为,3

a

??+∞????

二.求导后,导函数可以转化为c bx ax y ++=2时,如a 不定先讨论a>0,a=0,a<0;

再按在二次项的系数不等于零时对判别式按△>0、△=0、△<0;在△>0时,求导函数的零点再根据零点是否在定义域内进行讨论,若零点含参数在定义域内则对零点之间的大小进行讨论。

(2010辽宁文数))已知函数. (Ⅰ)讨论函数的单调

性;

(Ⅱ)设,证明:对任意,.

2

()(1)ln 1f x a x ax =+++()f x 2a ≤-12,(0,)x x ∈+∞1212|()()|4||f x f x x x -≥-

解:(Ⅰ) f(x)的定义域为(0,+),. 当a ≥0时,>0,故f(x)在(0,+)单调增加; 当a ≤-1时,<0, 故f(x)在(0,+)单调减少;

当-1<a <0时,令=0,解得

当x ∈

)时, >0; x ∈

+)时,<0, 故f(x)在(

单调增加,在

,+)单调减少.

(Ⅱ)不妨假设x 1≥x 2.由于a ≤-2,故f(x)在(0,+)单调减少.

所以等价于≥4x 1-4x 2,即f(x 2)+ 4x 2≥f(x 1)+ 4x 1.

令g(x)=f(x)+4x,则+4=. 于是

=≤0.

从而g(x)在(0,+)单调减少,故g(x 1) ≤g(x 2),

即 f(x 1)+ 4x 1≤f(x 2)+ 4x 2,故对任意x 1,x 2∈(0,+) ,. (2010北京理数)(18)(本小题共13分)已知函数()=In(1+)-+

(≥0)。 (Ⅰ)当=2时,求曲线=()在点(1,(1))处的切线方程;(Ⅱ)求()的单调区间。

解:(I )当时,,

∞2121

()2a ax a f x ax x x

+++'=+=()f x '∞()f x '∞()f x '()f x '∞()f x '∞∞1212()()4f x f x x x -≥-12()()f x f x -1

()2a g x ax x +'=

+2241ax x a x

+++()

g x '2441x x x -+-2(21)x x

--∞∞1212()()4f x f x x x -≥-f x x x 2

2

x x k k y f x f f x 2k =2

()ln(1)f x x x x =+-+1'()121f x x x

=-++

由于,, 所以曲线在点处的切线方程为

即 (II ),.

当时,. 所以,在区间上,;在区间

上,.

故得单调递增区间是,单调递减区间是.

当时,由,得, 所以,在区间和上,;在区间上,

故得单调递增区间是和,单调递减区间是. 当时, 故得单调递增区间是.

当时,,得,. 所以没在区间和上,;在区间上, 故得单调递增区间是和,单调递减区间是

三.求导后,因导函数为零是否有实根(或导函数的分子能否分解因式)不确定,而引起 的讨论。

四.因函数的零点的个数不确定而引起的讨论。

五.求参数的范围时由于不能分离出参数而引起的对参数进行的讨论

1.求导后,导函数的解析式含有参数,导函数为零时有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。

以上三点即为含参数导数问题的三个基本讨论点,在求解有关含参数的导数问题时,可按上述三点的顺序对参数进行讨论。因此,对含参数的导数问题的讨论,还是有一定的规律可

(1)ln 2f =3

'(1)2

f =()y f x =(1,(1))f 3

ln 2(1)2y x -=

-322ln 230x y -+-=(1)

'()1x kx k f x x

+-=+(1,)x ∈-+∞0k ='()1x

f x x

=-+(1,0)-'()0f x >(0,)+∞'()0f x <()f x (1,0)-(0,)+∞01k <<(1)

'()01x kx k f x x

+-=

=+10x =210k x k -=>(1,0)-1(,)k k -+∞'()0f x >1(0,)k

k

-'()0f x <()f x (1,0)-1(

,)k k -+∞1(0,)k

k

-1k =2

'()1x f x x

=+()f x (1,)-+∞1k >(1)

'()01x kx k f x x

+-==+11(1,0)k x k -=∈-20x =1(1,)k k --(0,)+∞'()0f x >1(,0)k

k

-'()0f x <()f x 1(1,)k k --(0,)+∞1(,0)k

k

-

循的。当然,在具体解题中,可能要讨论其中的两点或三点,这时的讨论就更复杂一些了,需要灵活把握。

1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。

以上三点即为含参数导数问题的三个基本讨论点,在求解有关含参数的导数问题时,可按上述三点的顺序对参数进行讨论。因此,对含参数的导数问题的讨论,还是有一定的规律可循的。当然,在具体解题中,可能要讨论其中的两点或三点,这时的讨论就更复杂一些了,需要灵活把握。

★★★★(导函数零点确定,但区间端点不确定引起讨论的典例)

1.求导后,需要判断导数等于零是否有实根,从而引发讨论:

2.求导后,需要比较导数等于零的不同实根的大小,从而引发讨论:

3.求导后,对于导数大于或小于零的不等式,两边同除一个代数式,需考虑代数式的正负,从而引发讨论:

4.求导后,导函数等于零有实根,需要判断实根是否在定义域内,从而引发讨论:

二、导数为0的点是否在定义域内,分类讨论策略

求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,所以必须分类,通过令导函数为零的实根等于定义域端点值,求分点,从而引起讨论.

三、导函数为0是否存在,分类讨论策略

求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),涉及到二次方程问题时,△与0的关系不定,所以必须分类,通过导函数是二次函数或者与二次函数有关,令△=0,求分点,从而引起讨论.

四、导函数为0的方程的根大小不确定,分类讨论策略

求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落在定义域内,但这些实根的大小关系不确定,分不了区间.所以必须分类,通过令几个根相等求分点,从而引起讨论.

求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。

一、求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的

实根是否落在定义域内,从而引起讨论。

二、求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根

也落在定义域内,但不知这些实根的大小关系,从而引起讨论。

三、

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

含参数导数问题分类讨论

含参数导数的解题策略 导数是研究函数性质的一种重要工具,利用导数可判断函数单调性、极值、最值等,其中渗透并充分利用着构造函数、分类讨论、转化与化归、数形结合等重要思想方法,导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力。而含参数的导数问题是近年来高考的难点和热点,本文着重就含参数导数的几种常见的解题策略加以归纳. 一、分离参数,转化为最值策略 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出 ()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转 化为函数求最值. 例1、已知函数x x x f ln )(=.(Ⅰ)求)(x f 的最小值; (Ⅱ)若对所有1≥x 都有,1)(-≥ax x f 求实数a 的取值范围. 二、导数为0的点是否在定义域内,分类讨论策略 求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,所以必须分类,通过令导函数为零的实根等于定义域端点值,求分点,从而引起讨论. 例2.已知a 是实数,函数))(2 a x x x f -=(. (Ⅰ)若3)1(='f ,求a 的值及曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)求)(x f 在区间[0,2]上的最大值. 三、导函数为0是否存在,分类讨论策略 求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),涉及到二次方程问题时,△与0的关系不定,所以必须分类,通过导函数是二次函数或者与二次函数有关,令△=0,求分点,从而引起讨论. 例3、已知函数,,讨论在定义域上的单调性. 四、导函数为0的方程的根大小不确定,分类讨论策略 求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落在定义域内,但这些实根的大小关系不确定,分不了区间.所以必须分类,通过令几个根相等求分点,从而引起讨论. 例4、已知0>m ,讨论函数x e m x m mx x f 6 3)1(3)(2++++=的单调性.

导数中求参数的取值范围

导数中求参数的取值范围 求参数取值范围的方法 1.分离参数,恒成立转化为最值问题 2.分离参数,结合零点和单调性解不等式 3.将参数分成若干个区间讨论是否满足题意 1已知函数 ()-x f x e ax =(a R ∈,e 为自然对数的底数). (Ⅰ)讨论函数() f x 的单调性; (Ⅱ)若1a =,函数()()()2x g x x m f x e x x =--++在()2,+∞上为增函数,求实数m 的取值范围. 解:(Ⅰ)函数() f x 的定义域为R ,()x f x e a '=-. 当0a ≤时, ()0f x '>,∴ () f x 在R 上为增函数; 当0a >时,由()0f x '=得ln x a =, 当(),ln x a ∈-∞时,()0f x '<,∴函数()f x 在(),ln a -∞上为减函数, 当 () ln ,x a ∈+∞时, ()0 f x '>,∴函数 () f x 在( ) ln ,a +∞上为增函数……4分 (Ⅱ)当1a =时, ()()()2x x g x x m e x e x x =---++, ∵ () g x 在()2,+∞上为增函数;∴()10x x g x xe me m '=-++≥在()2,+∞上恒成 立,即 1 1x x xe m e +≤-在()2,+∞上恒成立, …………………………6分 令 ()11x x xe h x e +=-,()2,x ∈+∞,则()()() 2 2 21x x x x e xe e h x e --'== -() () 2 21x x x e e x e ---, 令()2x L x e x =--, ()10 x L x e '=->在( ) 2,+∞上恒成立, 即 ()2 x L x e x =--在()2,+∞上为增函数,即()()2240L x L e >=->, ∴()0h x '>,即()11x x xe h x e +=-在()2,+∞上为增函数,∴ ()()22 21 21e h x h e +>=-, ∴22 21 1e m e +≤-,所以实数m 的取值范围是 2221,1e e ??+-∞ ?-??. ………………12分

高中数学含参导数问题

由参数引起的案—— 含参导数问题 一、已知两个函数k x x x f -+=168)(2 ,x x x x g 452)(2 3 ++=,按以下条件求k 的范围。 (1)对于任意的]3,3[-∈x ,都有)()(x g x f ≤成立。 (构造新函数,恒成立问题) (2)若存在成立。,使得)()(]3,3[000x g x f x ≤-∈ (与恒成立问题区别看待) (3)若对于任意的).()(]3,3[2121x g x f x x ≤-∈,都有、 (注意21,x x 可以不是同一个x ) (4)对于任意的)()(],3,3[]3,3[1001x f x g x x =-∈-∈使得,总存在。 (注意:哪个函数的值域含于哪个函数的值域取决于:谁的x 是任意取的,谁的x 是总存在的。) (5)若对于任意0x []3,3∈-,总存在相应的[]12,3,3x x ∈-,使得102()()()g x f x g x ≤≤成立; (与(4)相同) 二、已知函数()2 1ln (1)2 f x a x x a x =+-+, a R ∈ (1)函数f (x )在区间(2,﹢∞)上单调递增,则实数a 的取值范围是 ,

(2)函数f (x )在区间(2,3)上单调,则实数a 的取值范围是 . 三、设函数3()3f x x ax =- (a R ∈),若对于任意的[]1,1-∈x 都有()1f x ≤成立,求实数a 的取值范围. 四、含参数导数问题的三个基本讨论点 一、 求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。 二、 求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根 是否落在定义域内,从而引起讨论。 三、 求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落 在定义域内,但不知这些实根的大小关系,从而引起讨论。 例1、设函数3221 ()23()3 f x x ax a x a a R =-+-+∈.求函数)(x f 的单调区间和极值; (可因式分解,比较两根大小,注意别丢两根相等情况) 解: 2 2 ()4-3()(3)f x x ax a x a x a '=-+=--- ……………………………5分 0a =时,()0f x '≤,(,)-∞∞是函数的单调减区间;无极值;……………6分 0a >时,在区间(,),(3,)a a -∞∞上,()0f x '<; 在区间(,3)a a 上,()0f x '>, 因此(,),(3,)a a -∞∞是函数的单调减区间,(,3)a a 是函数的单调增区间, 函数的极大值是(3)f a a =;函数的极小值是3 4()3 f a a a =- ;………………8分 0a <时,在区间(,3),(,)a a -∞∞上,()0f x '<; 在区间(3,)a a 上,()0f x '>, 因此(,3),(,)a a -∞∞是函数的单调减区间,(3,)a a 是函数的单调增区间 函数的极大值是3 4()3 f a a a =- ,函数的极小值是(3)f a a = ………………10分 例1变式.若2 '()(1)f x x a x a =-++,若(0,)x ∈+∞,讨论()f x 的单调性。(比较根大小,考虑定义域)

导数中的参数范围的求法

导数中的参数范围的求法 一、 与单调性有关的参数问题 此时参数可以位于函数中也可以位于区间内,常见的提问方式是函数在某个区间单调递减、单调递增、单调、不单调,研究这类问题的关键是把握原函数和导函数的关系,这里需要注意的一个问题:若函数()f x 单调,则'()f x 恒为非正或非负,函数的极值点并不等同于导函数的零点,极值点的个数和导函数的根的个数也不能直接划等号。 例1.已知函数32()39f x x x x =--在区间(,21)a a -上单调递减,求a 的取值范围。 解析:先根据函数单调性作出函数的趋势图像,再安排存在参数的区间位置即可。 '2()3693(1)(3)f x x x x x =--=+- 令'()0f x >,则3x >或1x <-;令'()0f x <,则13x -<<,作出趋势图像如下: 函数在区间(,21)a a -上单调递减,需满足12131221a a a a a ≥-?? -≤?<≤??->? 例2.已知函数22 ()ln f x x a x x =++ 在[1,4]上是减函数,求实数a 的取值范围。 解析:转化为函数单调性与导函数的正负性的关系即可,'22()2a f x x x x =+ - 在[1,4]上是减函数,即'22 ()02f x a x x ≤?≤-+在[1,4]上恒成立 令22()2g x x x =-+,因为()g x 在[1,4]上递减,则min 63()(4)2 g x g ==- 所以632 a ≤-

例3.已知函数(),()ln ,f x ax g x x a R ==∈,若函数()2 ()()xf x G x ag x a x = ++在区间[1,)+∞上为单调函数,求a 的取值范围。 解析:题目只是说明函数是单调函数,并未说明是单增还是单减,因此需要分两种情 况讨论,将单调性转化为参数恒成立问题即可。 ()2()()xf x G x ag x a x =++,3' 22222()2a x ax G x x x x x +-=+-= 若()G x 在区间[1,)+∞上单调递增,则'()0G x ≥在[1,)+∞上恒成立,即 222a x x ≥ -在[1,)+∞上恒成立,令22 ()2h x x x =-,因为()h x 在[1,)+∞递减,则 max ()(1)0h x h ==,此时0a ≥ 若()G x 在区间[1,)+∞上单调递减,则'()0G x ≤在[1,)+∞上恒成立,即 222a x x ≤ -在[1,)+∞上恒成立,令22 ()2h x x x =-,因为()h x 无最小值,则不存 在这样的a 综上,0a ≥ 例4.已知函数32()(1)(5)f x x k x k x =+-++,其中k R ∈,若函数()f x 在区间(0,3)上不是单调函数,求k 的取值范围。 解析:这个问题相对复杂些,但是思路还算清晰,函数在(0,3)上不是单调函数,意味 着原函数在(0,3)上存在极值点,因为三次函数极值点的个数可能是两个也可能没有,原题目中排出没有的情况,因此题目存在两个极值点,但是这两个极值点有几个落在区间(0,3)内这是个问题,可能只有一个极值点在,也可能两个都在,此外极值点是导函数的根,题目即可转化为二次函数在区间内根的分布问题。 '2()32(1)5f x x k x k =+-++,函数()f x 在区间(0,3)上不是单调函数,则() f x 在(0,3)内必定存在极值点,此时()f x 不能单调递增,只能是保持一种增减增的状态,因此()f x 在(0,3)内的极值点可能是一个也可能是两个。 若极值点在(0,3)内只有一个,情况如下: (1)

导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题 含参数导数问题的分类讨论问题 1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。 ★已知函数ax x a x x f 2)2(2 131)(23++-=(a>0),求函数的单调区间 )2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a x a x x f ln )2(2)(+-- =(a>0)求函数的单调区间 2 2 2) )(2(2)2()(x a x x x a x a x x f --=++-=' ★★★例3已知函数()()22 21 1 ax a f x x R x -+=∈+,其中a R ∈。 (Ⅰ)当1a =时,求曲线()y f x =在点()() 2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。 ! 解:(Ⅰ)当1a =时,曲线()y f x =在点()() 2,2f 处的切线方程为032256=-+y x 。 (Ⅱ)由于0a ≠,所以()() 1 2)1(222+-+='x x a x f ,由 ()'0f x =,得121 ,x x a a =-=。这两个实根都在定 ()()()()()() 2 2 ' 2222 122122111a x a x a x x ax a a f x x x ? ?--+ ?+--+??==++义域R 内,但不知它们之间 的大小。因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。 (1)当0a >时,则12x x <。易得()f x 在区间1,a ? ? -∞- ??? ,(),a +∞内为减函数, 在区间1,a a ?? - ??? 为增函数。故函数()f x 在11x a =-处取得极小值 21f a a ?? -=- ??? ; 函数()f x 在2x a =处取得极大值()1f a =。 (1) 当0a <时,则12x x >。易得()f x 在区间),(a -∞,),1 (+∞-a 内为增函数,在区间 )1,(a a -为减函数。故函数()f x 在11 x a =-处取得极小值 21f a a ?? -=- ??? ;函数 ()f x 在 2x a =处取得极大值()1f a =。

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

运用导数解决含参问题

运用导数解决含参问题 运用导数解决含参函数问题的策略 以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。 解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、 复杂的问题转化为熟悉、规范甚至模式化、简单的问题。 解决的主要途径:是将含参数不等式的存在性或恒成立问题根据其不等式的结构特 征,恰当地构造函数,等价转化为:含参函数的最值讨论。 一、含参函数中的存在性问题 利用题设条件能沟通所求参数之间的联系,建立方程或不等式(组)求解。这是求存在性范围问题最显然的一个方法。 例题讲解 例1:已知函数x x x f ln 2 1)(2+= ,若存在],1[0e x ∈使不等式 m x f ≤)(0,求实数m 的取值范围 二、含参函数中的恒成立问题 可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,从而使这种具有函数背景的范围问题迎 刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。类型有:(1)双参数

中知道其中一个参数的范围;(2)双参数中的范围均未知。 一、选择题 1 .(2013年课标Ⅱ)已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) A .0x ?∈R,0()0 f x = B.函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0 f x = 2 .(2013年大纲)已知曲线()4 2 1-128=y x ax a a =+++在点,处切线的斜率为,() A .9 B .6 C .-9 D .-6 3 .(2013年湖北)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞ B .1 (0,)2 C .(0,1) D .(0,)+∞ 4.若函数3 2 ()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( )

(完整版)利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围 一.已知函数单调性,求参数的取值范围 类型1.参数放在函数表达式上 例1. 设函数R a ax x a x x f ∈+++-=其中86)1(32)(23. 的取值范围 求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(. ,3)()1(-∞= 二.已知不等式在某区间上恒成立,求参数的取值范围 类型1.参数放在不等式上 例3.已知时都取得极值与在13 2)(23=-=+++=x x c bx ax x x f (1)求a、b的值及函数)(x f 的单调区间. (2)若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. __________)(]2,1[,522)(.32 3 的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--= 类型2.参数放在区间上 例4.已知三次函数d cx x ax x f ++-=2 35)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值. (1)求)(x f 的解析式.(2)当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围. 分析:(1)935)(23++-=x x x x f ] 3,0(),0(0)(]3,0(),0(0)(30)3()(,)(,0)()3,3 1(9)0()()(,0)()3 1,0(3,310)() 3)(13(3103)().2(''21‘2'的取值范围为所以内恒成立 在时当且仅当内不恒成立在时所以当所以单调递减时当所以单调递增时当得由m m x f m ,m x f m f x f x f x f x f x f ,x f x f x x x x f x x x x x f >∈>>=><∈=>>∈===--=+-= 基础训练: .___________24.434的取值范围是则实数都成立对任意实数若不等式a ,x a x x -≥-

含参数导数方法总结

导数题型总结(解析版) 体型一: 关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =- - (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

含参数导数问题的三个基本讨论点

含参数导数问题的三个基本讨论点 导数是研究函数图像和性质的重要工具,自从导数进入高中数学教材以来,有关导数问题是每年高考的必考试题之一。随着高考对导数考查的不断深入,含参数的导数问题又是历年高考命题的热点。由于含参数的导数问题在解答时往往需要对参数进行讨论,因而它也是绝大多数考生答题的难点,具体表现在:他们不知何时开始讨论、怎样去讨论。对这一问题不仅高中数学教材没有介绍过,而且

在众多的教辅资料中也难得一见,本文就来讨论这一问题,供大家参考。 一、 求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。 例1(2008年高考广东卷(理科) 设k R ∈ ,函数 1 ,11(),()(),1x x f x F x f x kx x R x ??? 。 考虑导函数 '()0 F x =是否有实根,从而需 要对参数k 的取值进行讨论。

(一)若1 x <,则 () () 2 2 11'()1k x F x x --= -。由于当0 k ≤时, '()0 F x =无实根,而当0 k >时, '()0 F x =有实根, 因此,对参数k 分0 k ≤和0 k >两种情况讨论。 (1) 当0 k ≤时, '()0 F x ≥在 (,1) -∞上恒成立, 所以函数() F x 在 (,1) -∞上为增函数; (2) 当 k >时, () () 2 2 11'()11k x F x x x --= =-- 由 '()0 F x = ,得121,1x x ?? == ?? , 因为0 k >,所以 12 1x x <<。 由 '()0 F x >, 得 11x <<;由 '()0F x < , 得 1x <

导数问题中参数范围的求法-典型

导数问题中参数范围的求法 」、分离常数法 (I)常规分离常数法 g(a) f (x) min g(a) f (x) max (U)能分离常数,但求稳定点困难 原理:稳定点的估算利用连续函数介值定理去估算 例2、已知函数f (x ) 1一―1) (x 0),若当x 0时,f(x) x 求正整数k 的最大值. (x 叭呛 ° ° , h(x) x 1 ? x 1) x x 设 g(x) x 1 In(x 1) 从而 h(x) 0与g(x) 0在(0,)有相同根 x g (x) 0 由于 g(2) 0且 g(3) 0 x 1 所以g(x) 0存在唯 根 (2,3) 故g() 0 得 1 ln( 1) 0 x (0, )时 g(x) 0 h '(x) 0 x (, )时 g(x) 0 h '(x) 0 h(x)min ( 1)(I n( 1) 1) 1 (3,4) h() 所以k h (X )min 1 4 又因为 k Z , 故k max 3 ? (川)能分离常数,但求最值困难 例1、(2010全国卷一)已知函数f(x) (x 1)ln x x 1,若 xf (x) x 2 ax 1, f '(x) x 1 , Inx x xf '(x) x 2 ax 1 令 g(x) In x x ( 当0 x 1 时 g '(x) g ( x) mac g(x) 1 求a 的取值范围. a 0) , 解: 1 x Inx 1 x In x x g(x) x 当 x 1 时 g '(x) 0 g (1) 所以g(x) 1 故a 1 原理:将所给不等式变形为 g(a) f(x) g(a) f (x) 恒成立, 解:有已知k (x 1)f (x) (x 1)(1 n(x 1) 1) x 设 h(x)

导数含参数取值范围分类讨论题型总结与方法归纳

一.含参数导数问题的分类讨论问题 求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。 ★例1已知函数ax x a x x f 2)2(2 131 )(23++-=(a>0),求函数的单调区间 ★★例2已知函数x a x a x x f ln )2(2 )(+--=(a>0)求函数的单调区间 ★★★例3已知函数()()22211 ax a f x x R x -+=∈+,其中a R ∈。 (Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。 。 练习:已知函数 当时,讨论的单调性. 二.已知函数的单调性求参数范围可以转化为不等式恒成立问题; .例4.已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________. 练习:已知函数f (x )=x 3+ax 2-x +c ,且 a =f ′? ?????23. (1)求a 的值; (2)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.

恒成立分参 例1:设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________. 练习: 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98 ]C .[-6,-2] D .[-4,-3]

例说导数含参问题的处理策略

例说导数含参问题的处理策略详解 (完美终结篇) 张成 壹叁捌叁捌伍叁捌贰肆贰 一、 和单调性有关的含参问题 1. 求单调区间:本质是解含参不等式 例1:求2 ()()x a f x x -= 的单调区间 【解】2 ()() ()x a a x f x x -+'= 12x a x a ==- 当0a =时,()10f x '=>,故只有增区间:(,0),(0,)-∞+∞不能并哦 当0a >时,由2 ()() ()0x a x x f a x -+'= >即()(x a)0x a -+>得,x a x a <->, 由()(x a)0x a -+<得a x a -<< 当0a <时,由()0f x '>得,x a x a <>- 由()0f x '<得a x a <<- 综上所述:当0a =时函数增区间为(,0),(0,)-∞+∞ 当0a >时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 当0a <时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 例2:求函数f (x )=x 2e ax 的单调区间. 【解】 函数f (x )的导数f ′(x )=2x e ax +ax 2e ax =(2x +ax 2)e ax . 1220x x a ==- (1)当a =0时,由f ′(x )<0得 x <0;由f ′(x )>0,得x >0 所以当a =0时,函数f (x )在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数. 当a ≠0时,1220 x x a ==- (2)当a >0时,由2x +ax 2>0,得x <-2a 或x >0;由2x +ax 2<0,得-2 a <x <0. 所以当a >0时,函数f (x )在(-∞,-2a )和(0,+∞)上为增函数,在区间(-2 a ,0)上为减函数. (3)当a <0时,由2x +ax 2>0,得0<x <-2a ;由2x +ax 2<0,得x <0或x >-2 a , 所以当a <0时,函数f (x )在区间(-∞,0)和(-2a ,+∞)上为减函数,在区间(0,-2 a )上为增函数 总结:两个根大小不定时要讨论 2. 逆向问题:已知函数在某区间上单调性,求参数取值范围 (1) 解析式含参时:本质是恒成立问题: ()0f x '≥(()0f x '≤)恒成立 思路1:转化为求非含参一段函数的最值(范围) 思路2:数形结合 注意事项:端点能否取等号要注意

导数中的求参数取值范围问题

帮你归纳总结(五):导数中的求参数取值范围问题 一、常见基本题型: (1)已知函数单调性,求参数的取值范围,如已知函数()f x 增区间,则在此区间上 导函数()0f x '≥,如已知函数()f x 减区间,则在此区间上导函数()0f x '≤。 (2)已知不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。 例1.已知a ∈R ,函数2 ()()e x f x x ax -=-+.(x ∈R ,e 为自然对数的底数) (1)若函数()(1,1)f x -在内单调递减,求a 的取值范围; (2)函数()f x 是否为R 上的单调函数,若是,求出a 的取值范围;若不是,请说明 理由. 解: (1)2 -()()e x f x x ax =-+Q -2 -()(2)e ()(e )x x f x x a x ax '∴=-++-+-=2-(2)e x x a x a ??-++??. ()()f x 要使在-1,1上单调递减, 则()0f x '≤ 对(1,1)x ∈- 都成立, 2 (2)0x a x a ∴-++≤ 对(1,1)x ∈-都成立. 令2 ()(2)g x x a x a =-++,则(1)0, (1)0. g g -≤?? ≤? 1(2)01(2)0 a a a a +++≤?∴?-++≤?, 3 2a ∴≤-. (2)①若函数()f x 在R 上单调递减,则()0f x '≤ 对x ∈R 都成立 即2-(2)e 0x x a x a ??-++≤?? 对x ∈R 都成立. 2e 0,(2)0x x a x a ->∴-++≤Q 对x ∈R 都成立 令2 ()(2)g x x a x a =-++, Q 图象开口向上 ∴不可能对x ∈R 都成立 ②若函数()f x 在R 上单调递减,则()0f x '≥ 对x ∈R 都成立, 即2-(2)e 0x x a x a ??-++≥?? 对x ∈R 都成立, e 0,x ->Q 2(2)0x a x a ∴-++≥ 对x ∈R 都成立. 22(2)440a a a ?=+-=+>Q 故函数()f x 不可能在R 上单调递增. 综上可知,函数()f x 不可能是R 上的单调函数 例2:已知函数()()ln 3f x a x ax a R =--∈, 若函数()y f x =的图像在点(2,(2))f 处的切

高考导数题的解题技巧绝版

高考导数题的解题技巧 绝版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

导数题的解题技巧 导数命题趋势: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值,证明不等式, 函数单调性,应用题,与三角函数或向量结合. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是31 ()213 f x x x =++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2()2,(1)12 3.f x x f ''=+∴-=-+= 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若 M P,则实数a 的取值范围是 ( )

A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1. 1 x a x a a x x -<∴<<<<-当a>1时当a<1时 综上可得M P 时, 1.a ∴> 考点2 曲线的切线 (1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题 例3.(2007年湖南文)已知函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内各 有一个极值点. (I )求24a b -的最大值; (II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点 A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 思路启迪:用求导来求得切线斜率. 解答过程:(I )因为函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内分别有一 个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-,且2104x x <-≤.于是 2044a b <-,20416a b <-≤,且当11x =-, 23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

导数中参数的取值范围问题

题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立; 经验1:此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到几个根;第二步:列表如下;第三步:由表可知; 经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元); 第二种:分离变量求最值; 第三种:关于二次函数的不等式恒成立; 第四种:构造函数求最值;题型特征()()(x g x f >恒成立0)()()(>-=?x g x f x h 恒成立) ; 单参数放到不等式上 设函数1 ()(1)ln(1) f x x x = ++(1x ≠,且0x ≠) (1)求函数的单调区间; (2)求()f x 的取值范围; (3)已知11 (1)2 m x x +>+对任意(1,0)x ∈-恒成立,求实数m 的取值范围。 2.已知函数ln ()1a x b f x x x = ++在点(1,(1))f 处的切线方程为230x y +-= (1)求,a b 的值; (2)如果当0x >,且1x ≠时,ln ()1x k f x x x =+-,求k 的取值范围.

3.已知函数4 4 ()ln (0)f x a x b c x x x =+->在 0x >出取得极值3c -- ,其中 ,,a b c 为常数. (1)试确定,a b 的值; (2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2 ()2f x c ≥-恒成立,求c 的取值范围。 4.已知函数2 ()21f x ax x = ++,()a g x x = ,其中0,0a x >≠ (1)对任意的[1,2]x ∈,都有()()f x g x >恒成立,求实数a 的取值范围; (2)对任意的1 2 [1,2],[2,4]x x ∈∈,2 1 )()(f g x x >恒成立,求实数a 的取值范围 5.已知函数()2 a f x x x =+,()ln g x x x =+,其中0a >.若对任意的[]12,1x x e ∈,(e 为 自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围

相关主题
文本预览
相关文档 最新文档