当前位置:文档之家› 系统牛顿第二定律与整体法详解

系统牛顿第二定律与整体法详解

系统牛顿第二定律与整体法详解
系统牛顿第二定律与整体法详解

F 2

F 12

F 1

F 21 2

1

1 2 3 ...)a 系统的牛顿第二定律与整体法详解

在静力学、动力学问题中,涉及到系统外力时,我们往往采用整体法处理,但是很多资料并没有讲清 楚整体法的适用条件,以及背后的理论基础,甚至限定只允许在几个物体相对静止时使用整体法,使得整 体法的适用范围大大缩小。本文则从系统的牛顿第二定律入手,奠定整体法解决静力学、动力学问题的理 论基础,并通过实例展示整体法的广阔应用空间。

一、系统的牛顿第二定律 1、推导

如图所示,两个物体组成一个系统,外界对系统内物体有力的作用(系统外力),系统内物体之间也 有相互作用(系统内力),则

对 1: F 1 + F 21

m 1a 1 对 2: F + F =

2 12

m 2a 2

其中, F 21 = -F 12

联立,得: F 1 + F 2

= m 1a 1 +

m 2a 2

这个方程中,等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相 加。

上述推导中,研究对象只有两个,但是很容易将上述结论推广到任意多个研究对象,方法仍然是分别 对各个物体列动力学方程,然后相加——由于内力总是成对出现,且每对内力总是等大反向,因此相加的结果仍然是:等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相加。这个结论就是系统的牛顿第二定律,其通式为:

或者: ∑ F = ∑ F 外 = m 1a 1 + m 2a 2 + m 3a 3 + ... , ∑

2、理解

外x m 1a 1x + m 2a 2 x + m 3a 3 x + ... F 外y

= m 1a 1 y + m 2a 2 y + m 3a 3 y + ...

系统的牛顿第二定律表达式左边只有系统外力,因此它只适用于处理系统外力相关问题,一旦涉及系 统内力,则只能用隔离法。系统的牛顿第二定律表达式右边为“各个部分的质量乘以相应的加速度然后矢 量相加”,因此并不要求各个部分相对静止——各个部分有相对速度、相对加速度时,仍然可以选系统为 研究对象,使用整体法处理问题。

如果系统内各个部分是相对静止的——即各个部分的加速度、速度均相同,则系统的牛顿第二定律方

程可以简化为:∑ F = (m + m + m +

,这就是我们熟悉的几个物体相对静止时的整体动力学方程。 对于这个方程,我们甚至可以这样理解——任何物体都是有内部结构的,组成物体的各个部分之间都存在 相

互作用和相对运动,但是,在处理某些问题时,当内部运动相对整体运动可以忽略不计时,我们就可以 近似的认为各个部分是相对静止的,把物体当作一个“质点”来处理,从而只需要考虑整体所受外力的影 响。比如人站在地面上不动,求地面支持力的大小——这个问题中,人体内心脏在跳动、血液在流动、肺 部在呼吸、肠胃在蠕动……但是,在大部分问题的处理中,我们往往并不考虑这些,而直接把人体当作一 个质点来处理了。

不过,上述推导过程中,将系统内力进行了相加,并且依据一对内力总是等大反向(牛顿第三定律), 认为内力总和为零。实际上,内力作用对系统内各个物体的加速度是有影响的,一对内力的效果是无法抵

= 外

消的——毕竟它们是作用在不同物体上。因此,内力总和为零是从数学意义角度处理的,系统的牛顿第二 定律是一个有用的数学结论。有些学生无法理解明明是作用在 1 物体上的力,如何会在 2 物体上产生加速度,其原因就在这里——因此,没必要把系统的牛顿第二定律看成是一个因果关系方程,仅仅看作一个有用的数学结论即可。

二、整体法的应用举例

因为不涉及系统内力,所以用整体法处理问题往往来得比隔离法分别处理各个物体要简洁、迅速得多, 因此,审题时要敏锐的把握住题意——是否涉及的是系统外力,或者只需要考虑系统外力即可,如果是, 优先考虑使用整体法(系统牛顿第二定律)。

1、静力学中的应用 (1) 系统内几个物体相对静止的情况 【例 1】(2010·山东理综)如图所示,质量分别为 m 1、m 2 的两个物体通过轻弹簧连接,在力 F 的作用下一起沿水平方向做匀速直线运动(m 1 在地面,m 2 在空中),力 F 与水平方向成θ角.则 m 1 所受支持力 F N 和摩擦力 F f 正确的是( )

A .F N =m 1g +m 2g -F sin θ

F N B .F N =m 1g +m 2g -F cos θ

F C. F f =F cos θ

D. F f =F sin θ F f

【分析】地面对 m 1 的支持力、摩擦力,是“m 1、m 2、轻弹簧整体”的系统外力,因此本题用整体法较快。

【解析】选 m 1、m 2、轻弹簧整体为研究对象,其受力如图所示,则有:

竖直方向:F N +F sin θ-(m 1+m 2)g =0 水平方向:F f -F cos θ=0 解得:F N =m 1g +m 2g -F sin θ,F f =F cos θ。选 AC 。

【例 2】(2014·济宁模拟)如图所示,两个光滑金属球 a 、b 置于一个桶形容器中两球的质量 m a >m b ,对于图中的两种放置方式,下列说法正确的是( )

A .两种情况对于容器左壁的弹力大小相同

B .两种情况对于容器右壁的弹力大小相同

C .两种情况对于容器底部的弹力大小相同

D .两种情况两球之间的弹力大小相同

(m 1+m 2)g

【分析】容器壁和容器底部对球的弹力都是系统外力,因此可以使用整体法分析;不过本问题中,系 统在水平方向所受外力均为未知力,因此仅仅选整体为研究对象,是无法求解的。因此需要先选上面的物 体为研究对象,分析出左壁对球的弹力后,再用整体法才可。

【解析】以上面的金属球为研究对象,其受力如图 1 所示,将三个力按顺序首尾相接,得如图 2 闭合

三角形,则有:F N1=m g tan θ, F = m 上g

,由于两种情

F N 地 N

cos θ 况下θ不变,则 m 上减小时,F N1、F N 均减小。 选两球整体为研究对象,其受力如图 3 所示,则有: 竖直方向:F N 地-(m 1+m 2)g =0

水平方向:F N1-F N2=0

解得:F N 地=(m 1+m 2)g 不变,F N1=F N2=m 上 g tan θ均变化。

本题选 C . (2) 系统内个别物体匀速运动的情况

m 上 g F N1 m 上 g F N1 F N2 m 总 g F N1 【例 3】(2013·北京理综·改编)倾角为α、质量为 M 的斜面体静止放置在粗糙水平桌面上,质量为 m 的木块恰好能沿斜面体匀速下滑。则下列结论正确的是( )

A. 木块受到的摩擦力大小是 mg cos α

B. 木块对斜面体的压力大小是 mg sin α

C. 桌面对斜面体的摩擦力大小是 mg sin αcos α

D. 桌面对斜面体的支持力大小是(M +m )g

【分析】桌面对斜面体的摩擦力和支持力是系统外力,可以选木块、斜面体系统为研究对象分析这两 个力。

θ F N F N θ

2μg 3L

. 【解析】选木块为研究对象,易知 A 应为 mg sin α、B 应为 mg cos α;选木块、斜面体系统为研究对象, 其受力如图所示,由题意,木块、斜面体加速度均为 0,故有: 竖直方向:F N 地-(M +m )g =0

水平方向:F f =0

解得:F N 地=(M +m )g 。本题选 D 。

2、动力学中的应用

(1) 系统内几个物体相对静止的情况 F N 地

F f

(M+m )g

【例 4】(2012·江苏高考)如图所示,一夹子夹住木块,在力 F 作用下向上提升。夹子和木块的质量分别为 m 、M ,夹子与木块两侧间的最大静摩擦力均为 f 。若木块不滑动,力 F 的最大值是( )

2f (m +M ) A . M

2f (m +M ) . m 2f (m +M ) . M -(m +M )g D 2f (m +M ) m +(m +M )g 【分析】力 F 是系统外力,可用整体法分析;但是,整体加速度取最大值时——即临界点——是在夹子与木块的接触面上静摩擦力最大时,这是系统内力,因此需先用隔离法——选木块为研究对象——求出 整体加速度的最大值。

【解析】设系统允许的最大加速度为 a 。选木块为研究对象,有:2f -Mg =Ma

选整体为研究对象,有:F -(M +m )g =(M +m )a

联立,解得: 2f (m +M ) F = M

.选 A 。

【例 5】如图所示,水平转台上放有质量均为 m 的两个小物块 A 、B ,A 离转轴中心的距离为 L ,A 、B 间用长为 L 的细线相连。开始时,A 、B 与轴心在同一直线上,细线刚好被拉直,A 、B 与水平转台间的动摩擦因数均为μ,最大静摩擦力等于滑动摩擦力,求:

(1) 当转台的角速度达到多大时细线上开始出现张力? (2)当转台的角速度达到多大时 A 物块开始滑动?

【解析】(1)转台角速度取值逐渐变大的过程中,B 所受静摩擦力先达到最大值,此时对 B ,有:

μmg = m ω2 ? 2L ,解得:ω =

1

1

角速度取值再增大时,B 有离心运动趋势,绳中出现张力。 (2) 转台角速度取值进一步增大,A 所受静摩擦力也逐渐增大到最大值,此时,对 A 、B 系统,有:

μmg + μmg = m ω2L + m ω2 ? 2L ,解得:ω =

2

2

2

(2)系统的物体间存在相对运动的情况 ①直线运动

【例 6】一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环箱

与杆的质量为 M ,环的质量为 m ,如图所示。已知环沿杆以加速度 a 匀加速下滑则此时箱对地面的压力大小为( ) A .Mg B .Mg -ma C .Mg +mg D .Mg +mg -ma 【分析】由牛顿第三定律可知,箱对地面的压力大小等于地面对箱的支持力,地面是“箱、 环系统”的外面,因此分析地面对箱的支持力时可用整体法。 【解析】选箱、环系统为研究对象,其受力如图所示,由系统的牛顿第二定律,有:

(M +m )g -F N =M ×0+ma 解得:F N =(M +m )g -ma 。由牛顿第三定律可知,箱对地面压力 F’N =F N =(M +m )g -ma 。选

F N

()g D.

【例 7】如图所示,滑块 A 以一定初速度从粗糙斜面体 B 的底端沿 B 向上滑,然后又返回,整个过程 中斜面体 B 与地面之间没有相对滑动,那么滑块向上滑和下滑的两个过程中( )

A .滑块向上滑动的时间等于向下滑动的时间

B .滑块向上滑动的时间大于向下滑动的时间

C .斜面体 B 受地面的摩擦力大小改变、方向不变

D .斜面体 B 受地面的支持力大小始终等于 A 与 B 的重力之和

μg

2L

B C

【解析】滑块上滑时做减速运动,加速度沿斜面向下,大小为a

1

=g sinθ+μg cosθ,下滑时做加速运

动,加速度沿斜面向下,大小为a

2

=g sinθ-μg cosθ。由于上滑、下滑位移相同,且最高点速度均为零,易知上滑时间短。

选滑块、斜面体整体为研究对象,其受力如图所示;将滑块加速度水平、

竖直分解,则有:

竖直方向:(M+m)g-F N

=M×0+ma y

水平方向:F f=M×0+ma x F f

解得:F N

=(M+m)g-ma y,F f=ma x。

由于a

1 >a

2

,故有a

1 y

>a

2 y

、a

1x

>a

2 x

,则下滑过程相对上滑过程,有

摩擦力方向始终向左,大小减小;支持力总是小于系统总重力,并且增大。选C。F N

a x

a i a y (M+m)g

【例8】如图所示,质量分别为m、2m 的两物块A、B 中间用轻弹簧相连,A、B 与水平面间的动摩擦因数均为μ,在水平推力F 作用下,A、B 一起向右做加速度大小为a 的匀加速直线运动。当突然撤去推力F 的瞬间,A、B 两物块的加速度大小分别为( )

A.2a、a B.2(a+μg)、a+μg

C.2a+3μg、a D.a、2a+3μg

【解析】撤去F 瞬间,由于惯性,A、B 来不及发生明显位移,则弹簧弹力不变,B 受力情况不变,即B 的加速度仍为a;选A、B、轻弹簧系统为研究对象,有:

-μ(m + 2m)g =ma

A

+ 2ma

解得:a

A

=-3μg - 2a ,即A 的加速度方向向左,大小为2a+3μg。选C。

【例9】如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块。已知木块的质量m =1kg,木板的质量M=4kg,长L=2.5m,木板上表面与木块之间的动摩擦因数为μ1=0.3,下表面与地面之间的动摩擦因数μ2=0.2,g 取10 m/s2。欲使木板能从木块的下方抽出,对木板施加的拉力应满足什么条件?

解析】当木板从木块下抽出时,木块加速度为:

a = 11 m 1

要使木板能从木块下抽出,则抽出时木板加速度a2 需满足:a2 >a1 ;选木块、木板系统为研究对象,由系统的牛顿第二定律,有:

F-μ

2(M+m)g=ma

1

+Ma

2

联立,解得:F>(μ1+μ2)(M+m)g=25N。

②曲线运动

【例10】(2015·山东省桓台模拟)如图,质量为M 的物体内有光滑圆形轨道,现有一质量为m 的小滑块沿该圆形轨道在竖直面内作圆周运动。A、C 点为圆周的最高点和最低点,B、D 点是与圆心O 同一水平线上的点。小滑块运动时,物体M 在地面上静止不动,则物体M 对地面的压力F N 和地面对M 的摩擦力有关说法正确的是( )

A.小滑块在A 点时,F N>Mg,摩擦力方向向左

B.小滑块在B 点时,F N=Mg,摩擦力方向向右

C.小滑块在C 点时,F N=(M+m)g,M 与地面无摩擦

D.小滑块在D 点时,F N=(M+m)g,摩擦力方向向左

【解析】小滑块在A 点时,加速度竖直向下,在C 点时,加速度竖直向上;在B 点,竖直加速度向下为g,水平加速度向右指向圆心,在D 点,竖直加速度向下为g,水平加速度向左指向圆心。

选M、m 系统为研究对象,其竖直方向受重力(M+m)g 和地面支持力F N(由牛顿第三定律可知,地面支持力等于物体M 对地面的压力),水平方向可能受到地面摩擦力,则由系统的牛顿第二定律,有:

在A 点:(M +m)g -F

N =M ? 0 +ma

A

,F f=0;则F

N

= (M +m)g -ma

A

在C 点:F

N - (M +m)g =M ?0 +ma

C

,F f=0. 则F

N

= (M +m)g +ma

C

在B 点:(M +m)g -F

N =M ?0 +mg ,F f=ma x;则F

N

=Mg ,F f 水平向右;

在D 点:(M +m)g -F

N =M ?0 +mg ,F f=ma x。则F

N

=Mg ,F f 水平向左。

“牛顿第二定律”难题解析

(二)“牛顿第二定律”难题--压轴题参考答案与试题解析 9.(2011历城区校级模拟)在一个与水平面成α角的粗糙斜面上的A点放着一个物体,它系于一根不可伸长的细绳上,绳子的另一端B通过小孔C穿出底面,如图所示,开始时物体与C等高,当物体开始缓慢下滑时,适当的拉动绳端B,使物体在斜面上划过一个半圆到达C,则A和斜面之间的动摩擦因数μ为() A.s inαB.c osαC.t anαD.c otα 考点:牛顿第二定律;力的合成与分解的运用;向心力. 专题:压轴题;牛顿第二定律在圆周运动中的应用. 分析:物体缓慢转动,近似平衡,受力分析后,根据平衡条件列式求解. 解答:解:物体在斜面上缓慢运动时,受到4个力:重力G,绳子的拉力F1,斜面的支持力F2,物体在运动时受到的摩擦力F3,这四个力的合力近似为零; 其中F1和F3同斜面平行,F2同斜面垂直,G同斜面成(90°﹣α). 根据各力之间的平衡的原则,可列出以下公式: 在垂直斜面方向,有:F2=Gcos α 因此有摩擦力F3=μ F2=μGcosα 接下来考虑平行于斜面的力,为了简化问题状态,可以直接以A点处的系统状态来进行分析,此时时摩擦力和重力在斜面平行方向上的力是反向、等大的,即应该是近似平衡的,有 μGcosα=Gsinα 因此μ=tan α 故选C. 点评:这个解法最有技巧的部分就是选取了A点处受力分析,根据平衡条件得到重力的下滑分量等于摩擦力,然后列式求解;当然,也可以对其它点处,运用平衡条件列式. 11.(2007徐州模拟)压敏电阻的阻值随所受压力的增大而减小,有位同学利用压电陶瓷设计了判断小车运动状态的装置,其工作原理如图(a)所示,将压电陶瓷和一块挡板固定在绝缘小车上,中间放置一个绝缘重球,它的直径略小于陶瓷和挡板间的距离.小车向右做直线运动过程中,电压流表示数如图(b)所示,下列判断正确的是() A.从t1到t2时间内,小车做变加速直线运动 B.从t1到t2时间内,小车做匀加速直线运动 C.从t2到t3时间内,小车做匀加速直线运动 D.从t2到t3时间内,小车做匀速直线运动 考点:牛顿第二定律;闭合电路的欧姆定律. 专题:压轴题;恒定电流专题. 分析:根据图象,结合题意,得到压力的变化规律,再根据牛顿第二定律判断出加速度的变化规律,从而得到小车的运动情况. 解答:解:A、B、从t1到t2时间内,压电陶瓷两端电压变大,故受到的压力变大,故其对小球有向右且不断变大的压力,故小球的加速度不断变大,水平向右,由于速度向右,故小球向右做加速度不断变大的加速运动,故A正确,B错误; C、D、从t2到t3时间内,电陶瓷两端电压不变,故受到的压力恒定,故其对小球有向右且恒定大的压力,故小球的

牛顿第二定律,整体法隔离法经典编辑习题集(新)

相互作用 1.如图所示,横截面为直角三角形的斜劈A ,底面靠在粗糙的竖直墙面上,力F 通过球心水平作用在光滑球B 上,系统处于静止状态.当力F 增大时,系统还保持静止,则下列说法正确的是( ) A .A 所受合外力增大 B .A 对竖直墙壁的压力增大 C .B 对地面的压力一定增大 D .墙面对A 的摩力可能变为零 2.在竖直墙壁间有质量分别是m 和2m 的半圆球A 和圆球B ,其中B 球球面光滑,半球A 与左侧墙壁之间存在摩擦.两球心之间连线与水平方向成30°的夹角,两球恰好不下滑,设最大静摩擦力等于滑动摩擦力,(g 为重力加速度),则半球A 与左侧墙壁之间的动摩擦因数为( ) A. 23 B.3 3 C.43 D.332 3.如图甲所示,在粗糙水平面上静置一个截面为等腰三角形的斜劈A ,其质量为M ,两个底角均为30°.两个完全相同的、质量均为m 的小物块p 和q 恰好能沿两侧面匀速下滑.若现在对两物块同时各施加一个平行于斜劈侧面的恒力F1,F2,且F1>F2,如图乙所示,则在p 和q 下滑的过程中,下列说法正确的是( ) A .斜劈A 仍保持静止 B .斜劈A 受到地面向右的摩擦力作用 C .斜劈A 对地面的压力大小等于(M+2m )g D .斜劈A 对地面的压力大于(M+2m )g 4.如图所示,在质量为m=1kg 的重物上系着一条长30cm 的细绳,细绳的另一端连着一个轻质圆环,圆环套在水平的棒上可以滑动,环与棒间的动摩擦因数μ为0.75,另有一条细绳,在其一端跨过定滑轮,定

滑轮固定在距离圆环50cm的地方,当细绳的端点挂上重物G,而圆环将要开始滑动时,(g取10/ms2)试问: (1)角?多大? (2)长为30cm的细绳的张力是多少: (3)圆环将要开始滑动时,重物G的质量是多少? 4.如图所示,质量均可忽略的轻绳与轻杆承受弹力的最大值一定,杆的A端用铰链固定,光滑轻小滑轮在A点正上方,B端吊一重物G,现将绳的一端拴在杆的B端,用拉力F将B端缓缦上拉, 在AB杆达到竖直前(均未断),关于绳子的拉力F和杆受的弹力FN的变化,判断正 确的是() A.F变大B.F变小C.F N变大D.F N变小 5.如图所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。现施拉力F将B缓慢上拉(均未断),在AB杆达到竖直前() A.绳子越来越容易断, B.绳子越来越不容易断, C.AB杆越来越容易断,

牛顿第二定律解题技巧分析

龙源期刊网 https://www.doczj.com/doc/7914155578.html, 牛顿第二定律解题技巧分析 作者:姚良波 来源:《速读·上旬》2019年第10期 摘; 要:牛顿第二定律作为中学生在物理学习中的难点与重点知识,在最终的高考试卷中占据了较大的考试内容占比。本文将立足于学生学习情况与客观考试试卷内容,对牛顿第二定律解题技巧进行分析,希望能够促进教师教育教学工作的顺利展开。 关键词:牛顿第二定律;中学生学习;物理问题应用解析 对牛顿第二定律解题技巧展开分析,将能够提升学生的解题技巧,从而改善学生的卷面得分情况,也能够侧面的提高教师的教育教学水平。本文将从找准关键字、想象建模解题和正确书写三个方面对牛顿第二定律解题技巧进行一定分析,希望能够促进教育教学工作的改善。 一、找准关键字 在探讨牛顿第二定律解题技巧前,学生首先要判断该题目考查知识点中是否涉及到牛顿第二定律。判断该题目中是否涉及到牛顿第二定律知识点,则需要学生能够找准题目中的关键字。这就要求教师在日常练习中着重培养学生认真审题的习惯。教师可以让学生在日常解题时用铅笔进行点读,在点读时发现关键字时则要用笔在题目上进行一定标注。在读题时,学生首先要判断该题目属于平衡问题还是非平衡问题,如果题目中有关键字为“静止或匀速运动”,则此时a=0,学生则应该将本题判断为平衡问题;如果题目中的关键字为变速运动,则此时a≠0,为非平衡运动。学生首先要对该题目进行平衡或非平衡判断,才能在该基础上对题目进行进一步的探讨与研究。如果学生判断该题为平衡问题,则要对该题目中所涉及的具体物体或者人做受力分析。学生应该根据具体的题目要求选择其所需要的受力分析方法是合成法还是正分解法。如果该题目中所作受力分析中对力分析有三个,则学生宜采用合成法构建受力三角形;如果该题目中涉及到三个以上的力,则学生应该采用正交分解法对该题目中所涉及物体进行受力分析。如果学生判断该题目为非平衡问题,则以物体所受两个力为界限,两个力为合成法或者正交分解法;三个力及以上则应该使用正交分解法。就牛顿第二定律而言,如果该题目中涉及到非平衡问题,则适用牛顿第二定律,如果涉及到平衡问题,则解题模式为牛顿第一定律解题模式。而在利用牛顿第二定律解题时,一般我们采用正交分解法去进行物体的受力分析。 例如,质量为m的人站在斜面电梯上,该电梯以加速度a向上、向右做加速运动,a的方向与水平方向的夹角为α,根据以上信息,请求该站在斜面电梯上的人受到的支持力与摩擦力。学生根据题目中关键字加速度a、则可以判断该题目所考查知识点为牛顿第二定律,继而学生要根据题目要求判断位于电梯上的人的受力情况,并根据正交分解法对题目中的人进行受力情况分析。再根据具体的题目要求利用牛顿第二定律原始公式进行变式解题。

牛顿第二定律典型分类习题

1.如图3-2-3所示,斜面是光滑的,一个质量是0.2kg 的小球用细绳吊在倾角为53o 的 斜面顶端.斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s 2的加 速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力. 2.如图2所示,跨过定滑轮的轻绳两端,分别系着物体A 和B ,物体A 放在倾角为α的斜面上,已知物体A 的质量为m ,物体A 和斜面间动摩擦因数为μ(μ

1.如图3-2-4所示,m 和M 保持相对静止,一起沿倾角为θ的光滑斜面下滑,则M 和m 间的摩擦力大小是多少? 2、如图3-3-8所示,容器置于倾角为θ的光滑固定斜面上时,容器顶面恰好处于水平状态,容器,顶部有竖直侧壁,有一小球与右端竖直侧壁恰好接触.今让系统从静止开始下滑,容器质量为M ,小球质量为m ,所有摩擦不计.求m 对M 侧壁压力的大小. 3、有5个质量均为m 的相同木块,并列地放在水平地面上,如下图所示。已知木块与地面间的动摩擦因数为μ。当木块1受到水平力F 的作用,5个木块同时向右做匀加速运动,求: (1)匀加速运动的加速度; (2)第4块木块所受合力; (3) 第4木块受到第3块木块作用力的大小. 4.倾角为30°的斜面体置于粗糙的水平地面上,已知斜面体的质量为M=10Kg ,一质量为m=1.0Kg 的木块正沿斜面体的斜面由静止开始加速下滑,木块滑行路程s=1.0m 时,其速度v=1.4m/s ,而斜面体保持静止。求: ⑴求地面对斜面体摩擦力的大小及方向。 ⑵地面对斜面体支持力的大小。 图3-2-4 m M θ 图3-3-8 1 2 3 4 5 F

牛顿第二定律典型计算题精选

牛顿第二定律典型计算题精选 一、无相对运动的隔离法整体法(加速度是桥梁) 典例1:如图所示,bc 是固定在小车上的水平横杆,物块M中心穿过横杆,M通过细线悬吊着小物块m,小车在水平地面上运动的过程中,M始终未相对杆bc 移动,M、m与小车保持相对静止,悬线与竖直方向夹角为α,求M受到横杆的摩擦力的大小及方向。 二、有相对运动的隔离法整体法(12F ma Ma =+合) 典例2:如图所示,质量为M 的斜劈放置在粗糙的水平面上,质量为m 1的物块用一根不可伸长的轻绳挂起,并通过滑轮与在光滑斜面上放置的质量为m 2的滑块相连。斜面的倾角θ,在m 1、m 2的运动过程中,斜劈始终不动。若m 1=1kg ,m 2=3kg ,θ=37°,斜劈所受摩擦力大小及方向?(sin37°=0.6,g =10m/s 2)

三、传送带(共速后运动研判) 典例3:如图所示,传送带与水平方向成θ=30°角,皮带的AB部分长L=3.25m,皮带以v=2m/s的速率顺时针方向运转,在皮带的A端上方无初速地放上一个 μ=,求: 小物体,小物体与皮带间的滑动摩擦系数/5 (1)物体从A端运动到B端所需时间; (2)物体到达B端时的速度大小. 四、有动力滑板(最大静摩擦力决定分离点) 典例4:如图,质量M=1kg的木板静止在水平面上,质量m=1kg、大小可以忽略的铁块静止在木板的右端。设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间的动摩擦因数μ2=0.4,取g=10m/s2。现给铁块施加一个水平向左的力F,若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图中做出铁块受到的摩擦力f随力F大小变化的图像。

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

牛顿第二定律以及专题训练

牛顿第二定律 1.牛顿第二定律的表述(内容) 物体的加速度跟物体所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,公式为:F=ma(其中的F和m、a必须相对应)。 对牛顿第二定律理解: (1)F=ma中的F为物体所受到的合外力. (2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变. (4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。 (5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 (6)F=ma中,F的单位是牛顿,m的单位是千克,a的单位是米/秒2. (7)F=ma的适用范围:宏观、低速 2.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n 对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 ③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 ④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,那么问题都能迎刃而解。 3.应用举例 【例1】质量为m的物体放在水平地面上,受水平恒力F作用,由静止开始做匀加速直线运动,经过ts后,撤去水平拉力F,物体又经过ts停下,求物体受到的滑动摩擦力f.

牛顿第二定律

4-3 一、选择题(本大题共6小题,每小题5分,共30分) 1.(多选)(2017·南通高一检测)某物体在粗糙水平面上受一水平恒定拉力F作用由静止开始运动,下列四幅图中,能正确反映该物体运动情况的图象是() 【解析】物体所受合力一定,由F=ma知加速度a恒定,故C错误,D正确;又由v=at知v与t 成正比,A正确;由s=1 2知s与t2成正比,故B错误。 2at 【答案】AD 2.(多选)(2017·成都高一检测)力F1单独作用在物体A上时产生的加速度a1大小为5 m/s2,力F2单独作用在物体A上时产生的加速度a2大小为2 m/s2,那么,力F1和F2同时作用在物体A上时产生的加速度a的大小可能是() A.5 m/s2B.2 m/s2C.8 m/s2D.6 m/s2 【解析】设物体A的质量为m,则F1=ma1,F2=ma2,当F1和F2同时作用在物体A上时,合力的大小范围是F1-F2≤F≤F1+F2,即ma1-ma2≤ma≤ma1+ma2,加速度的大小范围为3 m/s2≤a≤7 m/s2,正确选项为A、D。 【答案】AD 3.(多选)如图所示,沿平直轨道运动的火车车厢中有一光滑的水平桌面,桌面上有一弹簧和小球,弹簧左端固定,右端拴着小球,弹簧处于原长状态。现发现弹簧的长度变短,关于弹簧长度变短的原因,以下判断中正确的是() A.火车可能向右运动,速度在增加 B.火车可能向右运动,速度在减小

C.火车可能向左运动,速度在增加 D.火车可能向左运动,速度在减小 【答案】AD 4.(2016·海南高考)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图所示。已知物体与斜面之间的动摩擦因数为常数,在0~5 s、5~10 s、10~15 s内F的大小分别为F1、F2和F3,则() A.F1F3 C.F1>F3D.F1=F3 【解析】加速下滑过程,有mg sin θ-F1-f=ma,匀速下滑过程,有mg sin θ-F2-f=0,减速下滑时,有F3-mg sin θ+f=ma,故有F1

整体法在牛顿第二定律中的应用

整体法在牛顿第二定律中的应用 例题1.质量为m 、长度为L 且质量分布均匀的软绳放在光滑水平面上,在绳的右端所施加的水平拉力为F ,如图所示.设离软绳左端距离为x 的A 处内部张力为T ,则 (1) 绳中A 处张力T 的大小; (2)假若水平面粗糙,则绳中A 处张力T 的大小如何? 例题2、一质量为M 、倾角为θ的楔形木块静置在水平桌面上,与桌面间的动摩擦因数为μ;另一物块质量为m 置于楔形木块的斜面上,物块与斜面的接触是光滑的。为了保持物块相对于斜面静止,可用一水平力推楔形木块,求此水平力F 的大小? 例3:如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的1/2,则小球在下滑过程中,木箱对地面的压力为多少?

一、选择题: 1.如图所示,质量为M=60kg 的人站在水平地面上,用定滑轮装置将质量为m =40kg 的重物送到井中,当重物以2m/s 2的加速度加速下落时,忽略绳子和定滑轮的质量及定滑轮的摩擦,则人对地面的压力大小为( ) g 取10 m/s 2 A .200N B .280N C .320N D .1000N 2.如图4-1所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力( ) A .方向向左,大小不变 B .方向向左,逐渐减小 C .方向向右,大小不变 D .方向向右,逐渐减小 3、.(多选题)如图所示,在光滑水平面上有一质量为M 的斜劈,其斜面倾角为θ,一质量为m 的物体放在其光滑斜面上,现用一水平力F 推斜劈,恰使物体m 与斜劈间无相对滑动,则斜劈对物块m 的弹力大小为 ( ) 4.(多选题)两重叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图4-7所示,滑块A 、B 的质量分别为M 、m ,A 与斜面间的动摩擦因数为μ1,B 与A 之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B 受到的摩擦力( ) A .静摩擦力 B .方向沿斜面向上 C .大小等于μ1mgcos θ D .大小等于μ2mgcos θ 5、(多选题)如图,物块A 、B 质量相等,在恒力F 作用下,在水平面上做匀加速直线运动。若物块与水平面间接触面光滑,物块A 的加速度大小为a 1,物块A 、B 间相互作用力大小为N 1;若物块与水平面间接触粗糙,且物块A 、B 与水平面间的动摩擦因数相同,物块B 的加速度大小a 2,物块A 、B 间相互作用力大小为N 2,则以下判断正确的是( ) A 、a 1=a 2 B 、a 1>a 2 C 、N 1=N 2 D 、N 1

牛顿第二定律-优质教案

示范教案 3 牛顿第二定律 整体设计 教材分析 牛顿第二定律是动力学部分的核心内容,它具体地、定量地回答了物体运动状态的变化,即加速度与它所受外力的关系,以及加速度与物体自身的惯性——质量的关系;况且此定律是联系运动学与力学的桥梁,它在中学物理教学中的地位和作用不言而喻,所以本节课的教学对力学是至关重要的.本节课是在上节探究结果的基础上加以归纳总结得出牛顿第二定律的内容,关键是通过实例分析强化训练让学生深入理解,全面掌握牛顿第二定律,会应用牛顿第二定律解决有关问题. 教学重点 牛顿第二定律应用 教学难点 牛顿第二定律的意义 课时安排 1课时 三维目标 1.知识与技能 (1)掌握牛顿第二定律的文字内容和数学公式. (2)理解公式中各物理量的意义及相互关系. (3)知道在国际单位制中力的单位“牛顿”是怎样定义的. (4)会用牛顿第二定律的公式进行有关的计算. 2.过程与方法 (1)以实验为基础,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律. (2)认识到由实验归纳总结物理规律是物理学研究的重要方法. 3.情感、态度与价值观 渗透物理学研究方法的教育,体验物理方法的魅力. 教学过程 导入新课 情景导入 多媒体播放刘翔在国际比赛中的画面.如图. 边播放边介绍:短跑运动员在起跑时的好坏,对于取得好成绩十分关键,因此,发令枪响必须奋力蹬地,发挥自己的最大体能,以获得最大的加速度,在最短的时间内达到最大的运动速度.我们学习了本节内容后就会知道,运动员是怎样获得最大加速度的.复习导入 利用多媒体播放上节课做实验的过程,引起学生的回忆,激发学生的兴趣,使学生再一

牛顿第二定律各种典型题型

牛顿第二定律 牛顿第二定律 1.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。 2.表达式F=ma。 3.“五个”性质 考点一错误!瞬时加速度问题 1.一般思路:分析物体该时的受力情况―→错误!―→错误! 2.两种模型 (1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。 (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。 [例] (多选)(2014·南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是() A.两个小球的瞬时加速度均沿斜面向下,大小均为gsin θ B.B球的受力情况未变,瞬时加速度为零 C.A球的瞬时加速度沿斜面向下,大小为2g sin θ D.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零

[例](2013·吉林模拟)在动摩擦因数μ=0.2的水平面上有一个质量为m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零。当剪断轻绳的瞬间,取g=10 m/s2,以下说法正确的是( ) A.此时轻弹簧的弹力大小为20 N B.小球的加速度大小为8 m/s2,方向向左 C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右 D.若剪断弹簧,则剪断的瞬间小球的加速度为0 针对练习:(2014·苏州第三中学质检)如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F,此时突然剪断细线。在线断的瞬间,弹簧的弹力的大小和小球A的加速度的大小分别为( ) A.错误!,错误!+gB.错误!,错误!+g C.错误!,错误!+g D.错误!,\f(F,3m)+g 4.(2014·宁夏银川一中一模)如图所示,A、B两小球分别连在轻线两端,B球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A、B两小球的质量分别为m A、m B,重力加速度为g,若不计弹簧质量,在线被剪断瞬间,A、B A.都等于错误! B.错误!和0 C.错误!和错误!·错误!?D.错误!·错误!和错误! 考点二错误!动力学的两类基本问题分析 (1)把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。一个桥梁:物体运动的加速度是联系运动和力的桥梁。 (2)寻找多过程运动问题中各过程间的相互联系。如第一个过程的末速度就是下一个过程的初速度,画图找出各过程间的位移联系。

高一物理《牛顿第二定律》知识点讲解

高一物理《牛顿第二定律》知识点讲解 实验:用控制变量法研究:a 与F 的关系,a 与m 的关系 一、牛顿第二定律 1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a 的方向与F 合的方 向总是相同。 2.表达式:F=ma 或 m F a 合 = 用动量表述:t P F ?=合 揭示了:① 力与a 的因果关系.... ,力是产生a 的原因和改变物体运动状态的原因; ② 力与a 的定量关系.... 3、对牛顿第二定律理解: (1)F=ma 中的F 为物体所受到的合外力. (2)F =ma 中的m ,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个 物体组成一个系统)做受力分析时,如果F 是系统受到的合外力,则m 是系统的合质量. (3)F =ma 中的 F 与a 有瞬时对应关系, F 变a 则变,F 大小变,a 则大小变,F 方向变a 也方向变. (4)F =ma 中的 F 与a 有矢量对应关系, a 的方向一定与F 的方向相同。 (5)F =ma 中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. (6)F =ma 中,F 的单位是牛顿,m 的单位是kg ,a 的单位是米/秒2. (7)F =ma 的适用范围:宏观、低速 4. 理解时应应掌握以下几个特性。 (1) 矢量性 F=ma 是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。 (2) 瞬时性 a 与F 同时产生、同时变化、同时消失。作用力突变,a 的大小方向随着改变,是瞬时的对应关系。 (3) 独立性 (力的独立作用原理) F 合产生a 合;F x 合产生a x 合 ; F y 合产生a y 合 当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气

D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。 ②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。 ③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。由此特点知,绳子中的张力可以突变。 (3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性: ①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等。 ②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。

【精品】牛顿第二定律连接体问题整体法与隔离法

牛顿第二定律——连接体问题(整体法与隔离法) 一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统 二、处理方法——整体法与隔离法 系统运动状态相同 整体法 问题不涉及物体间的内力 使用原则 系统各物体运动状态不同 隔离法 问题涉及物体间的内力 三、连接体题型: 1、连接体整体运动状态相同:(这类问题可以采用整体法求解) 【例1】A、B两物体靠在一起,放在光滑水平面上,它们的质量分别为 kg m A 3 =,kg m B 6 =,今用水平 力 N F A 6 =推A,用水平力N F B 3 =拉B,A、B间的作用力有多大? 【练1】如图所示,质量为M的斜面A置于粗糙水平地面上,动摩擦因数为 μ,物体B与斜面间无摩擦。在水平向左的推力F作用下,A与B一起做匀加速直线运动,两者无相对滑动。已知斜面的倾角为θ,物体B 的质量为m,则它们的加速度a及推力F的大小为() A. ) sin ( ) ( , sinθ μ θ+ + = =g m M F g a B. θ θcos ) ( , cos g m M F g a+ = = C。 ) tan ( ) ( , tanθ μ θ+ + = =g m M F g a D。 g m M F g a) ( , cot+ = =μ θ 【练2】如图所示,质量为2 m的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑 定滑轮连接质量为1 m的物体,与物体1相连接的绳与竖直方向成θ角,则() A。车厢的加速度为 θ sin g B。绳对物体1的拉力为θ cos 1 g m C.底板对物体2的支持力为 g m m) ( 1 2 - D.物体2所受底板的摩擦力为 θ tan 2 g m 2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析) 【例2】如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套有 一个环,箱和杆的总质量为M,环的质量为m。已知环沿着杆向下加速运动,当加 速度大小为a时(a<g),则箱对地面的压力为() A。Mg+mgB。Mg—maC.Mg+maD.Mg+mg–ma 【练3】如图所示,一只质量为m的小猴抓住用绳吊在天花板上的一根质量为M的竖 直杆。当悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面的高度不变。则 杆下降的加速度为() A. g B。 g M m C。 g M m M+ D。 g M m M- 【练4】如图所示,在托盘测力计的托盘内固定一个倾角为 重4N的物体放在斜面上,让它自由滑下,那么测力计因 数是() A.4N B。23N C.0N 【练5】如图所示,A、B的质量分别为m A=0。2kg,m B=0。4kg,盘C的质量m C=0。 6kg,现悬挂于天花板O处,处于静止状态。当用火柴烧断O处的细线瞬间,木块 A的加速度a A多大?木块B对盘C的压力F BC多大?(g取10m/s2) A B C O A B F A F B B θA F M m

《牛顿第二定律》教案

《牛顿第二定律》教案 一、教学目标 (一)知识与技能 1.掌握牛顿第二定律的文字内容和数学公式。 2.理解公式中各物理量的意义及相互关系。 3.知道在国际单位制中力的单位“牛顿”是怎样定义的。 4.会用牛顿第二定律的公式进行有关的计算。 (二)过程与方法 1.渗透物理学研究方法的教育。 2.认识到由实验归纳总结物理规律是物理学研究的重要方法。 3.通过牛顿第二定律的应用能深切感受到科学源于生活并服务于生活,激发学生学习物理的兴趣。 (三)情感态度与价值观 1.渗透物理学研究方法的教育。 2.认识到由实验归纳总结物理规律是物理学研究的重要方法。 二、教学重点 通过课本,牛顿第二定律。 三、教学难点 1.牛顿第二定律的理解。 2.理解k=1时,F=ma。 四、教学准备

多媒体课件、粉笔、图片。 五、教学过程 新课导入: 师:利用多媒体播放上节课做实验的过程,引起学生的回忆,激发学生的兴趣,使学生再一次体会成功的喜悦,迅速把课堂氛围变成研究讨论影响物体加速度原因这一课题中去. 学生观看,讨论上节课的实验过程和实验结果。 师:通过上一节课的实验,我们知道当物体所受的力不变时物体的加速度与其所受的作用力之间存在什么关系? 生:当物体所受的力不变时物体运动的加速度与物体所受的作用力成正比。 师:当物体所受力不变时物体的加速度与其质量之间存在什么关系? 生:当物体所受的力不变时物体的加速度与物体的质量成反比。 师:当物体所受的力和物体的质量都发生变化时,物体的加速度与其所受的作用力、质量之间存在怎样的关系呢? 新课讲解: 一、牛顿第二定律 师:通过上一节课的实验,我们再一次证明了:物体的加速度与物体的合外力成正比,与物体的质量成反比。 师:如何用数学式子把以上的结论表示出来? 生:a∝F/m

牛顿第二定律典型题型

牛顿第二定律典型题型 题型1:矢量性:加速度的方向总是与合外力的方向相同。在解题时,可以利用正交分解法进行求解。 1、如图所示,物体A 放在斜面上,与斜面一起向右做匀加速运动,物体A 受到斜面对它的支持力和摩擦力的合力方向可能是 ( ) A .斜向右上方 B .竖直向上 C .斜向右下方 D .上述三种方向均不可能 1、A 解析:物体A 受到竖直向下的重力G 、支持力F N 和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N 和摩擦力F f 的合力F 一定有水平方向的分力,F 在竖直方向的分力与重力平衡,F 向右斜上方,A 正确。 2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为μ的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m 的土豆A 受其它土豆对它的总作用力大小应是 ( ) A .mg B .μmg C .mg 1+μ D .mg 1μ- 2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。 选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有μmg=ma ,a=μg 。而单一土豆A 的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。由矢量合成法则,得F 总= 1)()(+=+μmg mg ma ,因此答案C 正确。 例3、如图所示,电梯与水平面夹角为300 ,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m 的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小. 题型2:必须弄清牛顿第二定律的瞬时性 牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。物体在某一时刻加速度的大小和方向,是由该物体在这一

第6次:牛顿第二定律中的整体法与隔离法

牛顿第二定律中的整体法与隔离法 一、物体系牛顿第二定律:设系统中各质点的质量分别为12,, n m m m ,系统以外物体对系统的力有12,, m F F F ,这些里可能作用在系统内不同的质点;系统各质点的加速度分别为12,,n a a a ,则有: 11m n i i i i i F m a ===∑∑ 1、倾角为37?的斜面放在光滑水平面上,当质量m =4 Kg 的滑块以加速度a =5 m / s 2下滑,为使斜面不动,用挡板K 挡住斜面,如图所示,那么这时挡板K 对斜面的弹力为( ) (A )12 N , (B )14 N , (C )16 N , (D )18 N 。 2、质量为m 的小猫,静止于很长的质量为M 的吊杆上,如图1—17所示。在吊杆上端悬线断开的同时,小猫往上爬,若猫的高度不变,求吊杆的加速度。(设吊杆下端离地面足够高) 3、如图所示,质量为M 的平板小车放在倾角为θ的光滑斜面上(斜面固定),一质量为m 的人在车上沿平板向下运动时,车恰好静止,求人的加速度。 4、如图所示,质量M = 10kg 的木块ABC 静置 于粗糙的水平地面上,滑动摩擦因数μ = 0.02 ,在木块的倾角θ为30°的斜面上,有一质量m = 1.0kg 的物块静止开始沿斜面下滑,当滑行路程s = 1.4m 时,其速度v = 1.4m/s ,在这个过程中木块没有动,求地面对木块的摩擦力的大小和方向。(重力加速度取g = 10m/s 2)

二、复杂连接体问题一(隔离法):加速度关联 5、滑轮系统如图所示,m 1=3kg ,m 2=5kg ,今用力F 拉该滑轮竖直向上以加速度a =2m/s 2运动,拉力F 的大小为______(滑轮和绳的质量均不计)。 6、如图所示,三个物体通过滑轮与细绳相互连接,它们质量与运动方向如图所示,不计滑轮质量和一切摩擦。求质量m 1物块的加速度及两绳张力T 1和T 2。 7、如图所示m A =8kg, m B =10kg, m C =15kg, B μ=0.25, C μ=0.20,g=10m/s 2,问:A 、B 、C 的加速度分别为多少?绳中张力T 多大? 8、如图所示,小球1的质量是棒2的质量的1.8倍,棒的长度l =100cm ,滑轮和绳子的 质量以及摩擦力可以忽略不计,小球置于棒的下端相同的水平面上,然后放开系统。问经过多长时间小球与棒的上端处于同一水平面? 2

牛顿第二定律典型例题

牛顿第二定律典型例题 一、力的瞬时性 1、无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变. 2、弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失. 【例1】如图3-1-2所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直 线的夹角都是600 ,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度. 练习 1、(2010年全国一卷)15.如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整 个系统置于水平放置的光滑木坂上,并处于静止状态。现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a ?重力加速度大小为g ?则有 A. 10a =,2a g = B. 1a g =,2a g = C. 120, m M a a g M +== D. 1a g =,2m M a g M += 2、一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F 的值逐渐减小到零,又马上使其恢复到原值(方向不变),则( ) A .物体始终向西运动 B .物体先向西运动后向东运动 C .物体的加速度先增大后减小 D .物体的速度先增大后减小 3、如图3-1-13所示的装置中,中间的弹簧质量忽略不计,两个小球质量皆为m ,当剪断上端的绳子OA 的瞬间.小球A 和B 的加速度多大? 4、如图3-1-14所示,在两根轻质弹簧a 、b 之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同 图3-1-13 图3-1-2 图3-1-14

相关主题
文本预览
相关文档 最新文档