当前位置:文档之家› 线性代数教案

线性代数教案

线性代数教案
线性代数教案

《线性代数》

授课教案

刘思圆

第一章行列式

本章说明与要求:

行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题:

(1) 行列式的定义;

(2) 行列式的基本性质及计算方法;

(3) 利用行列式求解线性方程组(克莱姆法则).

本章的重点是行列式的计算,要求在理解n阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶行列式.

计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法.

行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件.

。本章的重点:行列式性质;行列式的计算。

。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。

§1.1二阶与三阶行列式

行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.

设有二元线性方程组

(1)

用加减消元法容易求出未知量x1,x2的值,当a11a22 –

a12a21≠0时,有

(2)

这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号

为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.

根据定义,容易得知(2) 中的两个分子可分别写成

如果记

则当D≠0时,方程组(1) 的解(2)可以表示成

, (3)

象这样用行列式来表示解,形式简便整齐,便于记忆.

首先(3) 中分母的行列式是从(1) 式中的系数按其原有的相对位置而排成的.分子中的行列式,x1的分子是把系数行列式中的第1列换成(1)的常数项得到的,而x2的分子则是把系数行列式的第2列换成常数项而得到的.

例1 用二阶行列式解线性方程组

解:这时

因此,方程组的解是

对于三元一次线性方程组

(4)

作类似的讨论,我们引入三阶行列式的概念.我们称符号

(5)

为三阶行列式,它有三行三列,是六项的代数和.这六项的和也可用对角线法则来记忆:从左上角到右下角三个元素的乘积取正号,从右上角到左下角三个元素的乘积取负号.

例2

当D≠0时,(4)的解可简单地表示成

(6)

它的结构与前面二元一次方程组的解类似.

例3 解线性方程组

解:

所以,

例4 已知

,问a,b应满足什么条件?(其中a,b均为实数).

解:

,若要a2+b2=0,则a与b须同时等于零.因此,当a=0且b=0时给定行列式等于零.

为了得到更为一般的线性方程组的求解公式,我们需要引入n阶行列式的概念,为此,先介绍排列的有关知识.

思考题:

当a、b为何值时,行列式

§1.2 排列

在n阶行列式的定义中,要用到排列的某些知识,为此先介绍排列的一些基本知识.

定义1由数码1,2,…,n组成一个有序数组称为一个n级排列.

例如,1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列.由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3!=6个.

数字由小到大的n级排列1234…n 称为自然序排列.

定义2在一个n级排列i1i2…in中,如果有较大的数 it 排在较小的数 is 的前面(is

例如,在4 级排列3412中, 31,32,41,42,各构成一个逆序数,所以,排列3412的逆序数为N(3412)=4.同样可计算排列52341的逆序数为

N(52341)=7.

容易看出,自然序排列的逆序数为0.

定义3 如果排列i1i2…in 的逆序数N(i1i2…in )是奇数,则称此排列为奇排列,逆序数是偶数的排列则称为偶排列.

例如,排列3412是偶排列.排列52341是奇排列.自然排列123…n是偶排列.

定义4 在一个n级排列i1…is…it…in中,如果其中某两个数is与it对调位置,其余各数位置不变,就得到另一个新的n级排列i1…it…is…in,这样的变换称为一个对换,记作(is,it).

如在排列3412中,将4与2对换,得到新的排列3214.并且我们看到:偶排列3412经过4与2的对换后,变成了奇排列3214.反之,也可以说奇排列3214经过2与4的对换后,变成了偶排列3412.

一般地,有以下定理:

定理1 任一排列经过一次对换后,其奇偶性改变.

证明:首先讨论对换相邻两个数的情况,该排列为:

a1a2…al i j b1b2…bmc1c2…cn

将相邻两个数i与j作一次对换,则排列变为

a1a2…al j i b1 b2…bmc1c2…cn

显然对数a1,a2,…al,b1,b2,…,bm和c1c2…cn来说,并不改变它们的逆序数.但当ij 时,经过i与j的对换后,排列的逆序数减少1个.所以对换相邻两数后,排列改变了奇偶性.

再讨论一般情况,设排列为

a1a2…al i b1b2…bmjc1c2…cn

将i与j作一次对换,则排列变为

a1a2…al j b1b2…bmi c1 c2…cn

这就是对换不相邻的两个数的情况.但它可以看成是先将i与b1对换,再与b2对换,…,最后与bm的对换,即i与它后面的数作m次相邻两数的对换变成排列

a1a2…alb1b2…bmi j c1…cn

然后将数j与它前面的数i,bm…,b1作m+1次相邻两数的对换而成.而对换不相邻的数i与j(中间有m个数),相当于作2m+1次相邻两数的对换.由前面的证明知,排列的奇偶性改变了2m+1次,而2m+1为奇数,因此,不相邻的两数i,j经过对换后的排列与原排列的奇偶性不同.

定理2 在所有的n级排列中(n≥2),奇排列与偶排列的个数相等,各为个.

证明:设在n!个n级排列中,奇排列共有p个,偶排列共有q个.对这p个奇排列施以同一个对换,如都对换(1,2),则由定理1知p个奇排列全部变为偶排列,由于偶排列一共只有q个,所以p≤q;同理将全部的偶排列施以同一对换(1,2),则q个偶排列全部变为奇排列,于是又有q≤p,所以q = p,即奇排列与偶排列的个数相等.

又由于n级排列共有n!个,所以q + p = n!,

定理3 任一n级排列i1i2…in都可通过一系列对换与n级自然序排列12…n互变,且所作对换的次数与这个n级排列有相同的奇偶性.

证明:对排列的级数用数学归纳法证之.

对于2级排列,结论显然成立.

假设对n–1级排列,结论成立,现在证明对于n级排列,结论也成立.

若in=n,则根据归纳假设i1i2…in–1是n–1级排列,可经过一系列对换变成12…(n–1),于是这一系列对换就把i1i2…in变成12…n.若in≠n,则先施行in与n的对换,使之变成i1'i2'…'i'n–1n,这就归结成上面的情形.相仿地,12…n也可经过一系列对换变成i1i2…in,因此结论成立.

因为12…n是偶排列,由定理1可知,当i1i2…in是奇(偶)排列时,必须施行奇(偶)数次对换方能变成偶排列,所以,所施行对换的次数与排列i1i2…in具有相同的奇偶性.

思考题:

1.决定i、j的值,使

(1) 1245i6j97为奇排列;

(2) 3972i15j4为偶排列.

2.排列n (n–1)(n–2)…321经过多少次相邻两数对换变成自然顺序排列?

§1.3 n阶行列式

本节我们从观察二阶、三阶行列式的特征入手.引出n阶行列式的定义.

已知二阶与三阶行列式分别为

其中元素aij的第一个下标i表示这个元素位于第i行,称为行标,第二个下标j表示此元素位于第j列,称为列标.

我们可以从中发现以下规律:

(1) 二阶行列式是2!项的代数和,三阶行列式是3!项的代数和;

(2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同的行和不同的列,三阶行列式中的每一项是三个元素的乘积,它们也是取自不同的行和不同的列;

(3) 每一项的符号是:当这一项中元素的行标是按自然序排列时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号.

作为二、三阶行列式的推广我们给出n阶行列式的定义.

定义1 由排成n行n列的n2个元素aij (i,j=1,2,…,n)组成的符号

称为n阶行列式.它是n!项的代数和,每一项是取自不同行和不同列的n个元素的乘积,各项的符号是:每一项中各元素的行标排成自然序排列,如果列标的排列为偶排列时,则取正号;为奇排列,则取负号.于是得

(1)

其中

表示对所有的n级排列j1j2…jn求和.

(1)式称为n阶行列式按行标自然顺序排列的展开式.

称为行列式的一般项.

当n=2、3时,这样定义的二阶、三阶行列式与上面§1.1中用对角线法则定义的是一致的.当n=1时,一阶行列为|a11|= a11.如

当n=4时,4阶行列式

表示4!=24项的代数和,因为取自不同行、不同列4个元素的乘积恰为4!项.根据n阶行列式的定义,4阶行列式为

例如a14a23a31a42行标排列为1234,元素取自不同的行;列标排列为4312,元素取自不同的列,因为N(4312)=5,所以该项取负号,即–a14a23a31a42是上述行列式中的一项.

为了熟悉n阶行列式的定义,我们来看下面几个问题.

例1 在5阶行列式中,a12a23a35a41a54这一项应取什么符号?

解:这一项各元素的行标是按自然顺序排列的,而列标的排列为23514.

因 N(23514)=4,故这一项应取正号.

例2 写出4阶行列式中,带负号且包含因子a11a23的项.

解:包含因子a11a23项的一般形式为

按定义,j3可取2或4,j4可取4或2,因此包含因子a11a23的项只能是

a11a23a32a44或a11a23a34a42

但因 N(1324)=1为奇数

N(1342)=2为偶数

所以此项只能是–a11a23a32a44.

例3 计算行列式

解这是一个四阶行列式,按行列式的定义,它应有4!=24项.但只有以下四项

adeh,adfg,bceh,bcfg

不为零.与这四项相对应得列标的4级排列分别为1234,1243,2134和2143,而N(1234)=0,N(1243)=1,N(2134)=1和N(2143)=2,所以第一项和第四项应取正号,第二项和第三项应取负号,即

= adeh–adfg–bceh+bcfg

例4 计算上三角形行列式

其中aii≠0 (i=1, 2,…, n).

解:由n阶行列式的定义,应有n!项,其一般项为

但由于D中有许多元素为零,只需求出上述一切项中不为零的项即可.在D 中,第n行元素除ann外,其余均为0.所以jn=n;在第n–1行中,除an–1n–1和an–1n外,其余元素都是零,因而jn–1只取n–1、n这两个可能,又由于ann、an–1n位于同一列,而jn=n.所以只有jn–1 = n–1.这样逐步往上推,

不难看出,在展开式中只有a11a22…ann一项不等于零.而这项的列标所组成的排列的逆序数是N(12…n)=0故取正号.因此,由行列式的定义有

=a11a22…ann

即上三角形行列式的值等于主对角线上各元素的乘积.

同理可求得下三角形行列式

=a11a22…ann

特别地,对角形行列式

=a11a22…ann

上(下)三角形行列式及对角形行列式的值,均等于主对角线上元素的乘积.例5 计算行列式

解这个行列式除了a1na2n–1…an1这一项外,其余项均为零,现在来看这一项的符号,列标的n级排列为n(n–1)…21,N(n(n–1)…21)= (n–1)+ (n–2)+…+2+1=

,所以

=

同理可计算出

=

=

由行列式的定义,行列式中的每一项都是取自不同的行不同的列的n个元素的乘积,所以可得出:如果行列式有一行(列)的元素全为0,则该行列式等于0.

在n阶行列式中,为了决定每一项的正负号,我们把n个元素的行标排成自然序排列,即

.事实上,数的乘法是满足交换律的,因而这n个元素的次序是可以任意写的,一般地,n阶行列式的项可以写成

(2)

其中i1i2…in,j1 j2…jn是两个n阶排列,它的符号由下面的定理来决定.

定理1 n阶行列式的一般项可以写成

(3)

其中i1i2…in,j1j2…jn都是n级排列.

证明:若根据n阶行列式的定义来决定(2)的符号,就要把这n个元素重新排一下,使得它们的行标成自然顺序,也就是排成

(4)

于是它的符号是

现在来证明(1)与(3)是一致的.我们知道从(2)变到(4)可经过一系列元素的对换来实现.每作一次对换,元素的行标与列标所组成的排列i1i2…in,

j1j2…jn就同时作一次对换,也就是N(i1i2…in)与N(j1j2…jn)同时改变奇偶性,因而它的和

N(i1i2…in)+N(j1j2…jn)

的奇偶性不改变.这就是说,对(2)作一次元素的对换不改变(3)的值,因此在一系列对换之后有

这就证明了(1)与(3)是一致的.

例如,a21a32a14a43是4阶行列式中一项,它和符号应为(–

1)N(2314)+N(1243)= (–1)2+1= –1.如按行标排成自然顺序,就是

a14a21a32a43,因而它的符号是(–1)N(4123)=(–1)3= –1

同样,由数的乘法的交换律,我们也可以把行列式的一般项

中元素的列标排成自然顺序123…n,而此时相应的行标的n级排列为i1i2…in,则行列式定义又可叙述为

思考题:

1.如果n阶行列式所有元素变号,问行列式的值如何变化?

2.由行列式的定义计算

f(x)=

中x4与x3的系数,并说明理由.

§1.4 行列式的性质

当行列式的阶数较高时,直接根据定义计算n阶行列式的值是困难的,本节将介绍行列式的性质,以便用这些性质把复杂的行列式转化为较简单的行列式(如上三角形行列式等)来计算.

将行列式D的行列互换后得到的行列式称为行列式D的转置行列式,记作DT,即若

,则

反之,行列式D也是行列式DT的转置行列式,即行列式D与行列式DT互为转置行列式.

性质1行列式D与它的转置行列式DT的值相等.

证:行列式D中的元素aij(i, j=1, 2,…,n)在DT中位于第j行第i 列上,也就是说它的行标是j,列标是i,因此,将行列式DT按列自然序排列展开,得

这正是行列式D按行自然序排列的展开式.所以D=DT.

《线性代数》课程教学大纲

《线性代数》课程教案大纲 课程代码:课程性质:专业基础理论课必修 适用专业:工科类各专业总学分数: 总学时数:修订年月: 编写年月:执笔:韩晓卓、李锋 课程简介(中文): 线性代数是理、工、经管各专业重要的基础课之一。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。 课程简介(英文): , . , , . . , , , , , , . 一、课程目的 《线性代数》是高等院校工科专业学生必修的一门基础理论课。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。 二、课程教案内容及学时分配 (一)教案内容 第一章行列式(学时) 教案内容:

二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。 本章的重点与难点: 重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。 难点:阶行列式的定义的理解;阶行列式计算。 第二章矩阵(学时) 教案内容: 矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点: 重点:矩阵的运算规律;逆矩阵的性质以及求法; 难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。 第三章矩阵的初等变换与线性方程组(学时) 教案内容: 矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件); 本章的重点与难点: 重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。 难点:利用初等变换求线性方程组的通解。

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数教案设计

线性代数 课程教案 学院、部 系、所 授课教师 课程名称线性代数 课程学时45学时 实验学时 教材名称 年月日 线性代数课程教案

授课类型 理论课 授课时间 3 节 授课题目(教学章节或主题):第一章 行列式 §1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换 本授课单元教学目标或要求: 1. 会用对角线法则计算2阶和3阶行列式。 2. 知道n 阶行列式的定义。 本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法 设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。 先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; …… 最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++ 。 2. n 阶行列式 121211 1212122212() 1 2(1)n n n n t p p np p p p n n nn a a a a a a D a a a a a a = = -∑ 其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列 12()n p p p 求和。 n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。 3. 对角线法则:只对2阶和3阶行列式适用 1112 112212212122 a a D a a a a a a = =-

线性代数教学大纲

线性代数Ⅰ课程教学大纲 一课程基本情况 课程名称:线性代数。 课程名称(英文): Linear Algebra。 课程编号:B11071。 课程总学时:40学时(全部为课堂讲授)。 课程学分:2学分。 课程分类:必修,考试课。 开课学期:第3学期。 开课专业:适合对数学类基础课要求较高的理工类本科专业,包括物理学(S)、计算机科学与技术(S)、农业机械化及其自动化、机械设计制造及其自动化、电气工程与自动化、电子信息工程、土木工程、工程管理等专业。 先修课程:无。 后续课程:大学物理等基础课和各专业相应专业课。 二课程的性质、地位、作用和任务 《线性代数》是高等学校上述各专业的重要基础课。由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其是在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已成为科学技术人员经常遇到的课题,因此学习和掌握线性代数的理论和方法是掌握现代科学技术以及从事科学研究的重要基础和手段,同时也是实现我院上述各专业培养目标的必备前提。本课程的主要任务是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法。使学生具有熟练的矩阵运算能力及用矩阵方法解决一些实际问题的能力。从而为学生进一步学习后续课程和进一步提高打下必要的数学基础。 三主要容、重点及深度 了解行列式的定义,掌握行列式的性质及其计算。理解矩阵(包括特殊矩阵)、逆矩阵、矩阵的秩的概念。熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律。理解逆矩阵存在的充要条件,掌握矩阵的求逆的方法。掌握矩阵的初等变换,并会求矩阵的秩。理解n维向量的概念。掌握向量组的线性相关和线性无关的定义及有关重要结论。掌握向量组的极大线性无关组与向量组的秩。了解n 维向量空间及其子空间、基、维数等概念。理解克莱姆(Cramer)法则。理解非齐次线性方程组有解的充要条件及齐次线性方程组有非零解的充要条件。理解齐次线性方程组解空间、基础解系、通解等概念。熟练掌握用行初等变换求线性方程组通解的方法。掌握矩阵的特征值和特征向量的概念及其求解方法。了解矩阵相似的概念以及实对称矩阵与对角矩阵相似的结论。了解向量积及正交矩阵的概念和性质。了解二次型及其矩阵表示,会用配方法及正交变换法化二次型为标准形。了解惯性定理、二次型的秩、二次型的正定性及其判别法。

线性代数教案

《线性代数》 授课教案 刘思圆 第一章行列式 本章说明与要求: 行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义;

(2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。本章的重点:行列式性质;行列式的计算。 。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题. 设有二元线性方程组 ?? ?=+=+2 2221211 112111b x a x a b x a x a (1) 用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22–a 12a 21≠0 时,有 ??? ??? ?--=--=2112221121 1211221 1222112122211a a a a a b b a x a a a a b a a b x (2) 这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号 2112221122 211211a a a a a a a a -= 为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号. 根据定义,容易得知(2) 中的两个分子可分别写成 222 121212221a b a b b a a b = -,2 21 111211211b a b a a b b a = -, 如果记22 21 1211a a a a D = ,22 2 1211a b a b D = ,2 21 1112b a b a D = 则当D ≠0时,方程组(1) 的解(2)可以表示成

线性代数教案

线性代数》 授课教案 刘思圆 第一章行列式 本章说明与要求: 行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问 题: (1) 行列式的定义; (2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则) . 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列) 展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则) .要掌握克莱姆法则并注意克莱姆法则应用的条件. 本章的重点:行列式性质;行列式的计算 本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。

§1.1 二阶与三阶行列式行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题. 设有二元线性方程组 (1) 用加减消元法容易求出未知量x1,x2 的值,当a11a22 –a12a21≠0 时,有 (2) 这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2) 这个结果,这就是行列式的起源.我们称4个数组成的符号 为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线) 上两个元素的乘积,取正号;另一个是从右上角到左下角的 对角线(又叫次对角线) 上两个元素的乘积,取负号. 根据定义,容易得知(2) 中的两个分子可分别写成

线性代数教案 第一章 行列式

第一章 行列式 本章说明与要求: 行列式的理论是从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义; (2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。本章的重点:行列式性质;行列式的计算。 。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的. 设有二元线性方程组 ???=+=+2 2221211 112111b x a x a b x a x a (1) 用加减消元法知,当a 11a 22 – a 12a 21≠0时,有:211222112122211a a a a b a a b x --=, 21 12221121 12112a a a a a b b a x --= (2) 这是一般二元线性方程组的公式解.但公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号 2112221122 211211a a a a a a a a -=为二阶行列式. 它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.

线性代数--中国科技大学--典型教案

典型教案 第一章线性方程组的解法 线性方程组就是一次方程组。 先来分析中学数学怎样解二元一次方程组。看它的原理和方法是否可以推广到一般的多元一次方程组。 例1、解方程组 3x+4y=2 (1) 2x-5y=9 (2) 解、用加减消去法消元: 5x(1)式+4x(2)式:23x=46 (3) 2x(1)式-3x(2)式:23y= -23 (4) 由(3)和(4)解出 x=2 ,y= -1。 代入(1),(2)式检验知道它是原方程组的解。 以上解法的基本原理是: 由原方程(1)、(2)分别乘以适当的常数再相加,得到各消去了一个未知数的新方程(3)、(4), 从中容易解出未知数的值来. 将一组方程分别乘以常数再相加,得到的新方程称为原来那一组方程的线性组合。原来那一组方程的公共解一定是它们的任意一个线性组合的解。 新方程(3)、(4)都是原方程(1)、(2)的线性组合, (1)、(2)的公共解一定是(3)、(4)的解. 但反过来, 由(3)、(4)求出的解是否一定是(1)、(2)的解?这却并不显然。 因此需要将(3)、(4)的解代入(1)、(2)检验。 或者说明(1)、(2)也是(3)、(4)的线性组合。从而由(3)、(4)组成的方程组与原方程组同解. 1.1. 方程组的同解变形 1. 线性方程组的定义 2. 方程的线性组合: 方程的加法 方程乘以常数 方程的线性组合: 将m 个方程分别乘以m 个已知常数,再将所得的m 个方程相加, 得到的新方程称为原来那m 个方程的一个线性组合 容易验证: 如果一组数(c_1,c_2,…,c_n) 是原来那些方程的公共解, 那么它也是这些方程的任一个线性组合的解. 注意: 线性组合的系数中可以有些是0, 甚至可以全部是0. 如果某些系数是0, 所得到的线性组合实际上也就是系数不为0 的那些方程的线性组合。 如果方程组(II) 中每个方程其余都是方程组(I) 中的方程的线性组合, 就称方程组(II) 是方程组(I) 的线性组合. 此时方程组(I) 的每一组解也都是方程组(II) 的解。 如果方程组(I) 与方程组(II) 互为线性组合, 就称这两个方程组等价。此时两

线性代数教案(正式打印版)

线性代数教案(正式打印版)

第(1)次课授课时间() 教学章节第一章第一、二、三节学时2学时 教材和 参考书 1.《线性代数》(第4版)同济大学编 1.教学目的:熟练掌握2阶,3阶行列式的计算; 掌握逆序数的定义, 并会计算; 掌握n阶行列式的定义; 2.教学重点:逆序数的计算; 3.教学难点:逆序数的计算. 1.教学内容:二、三阶行列式的定义;全排列及其逆序数;n阶行列式的定义 2.时间安排:2学时; 3.教学方法:讲授与讨论相结合; 4.教学手段:黑板讲解与多媒体演示.

基本内容备注第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22换 成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公

线性代数作业第四章(2)讲课教案

线性代数作业第四章 (2)

第四章 向量组的线性相关性(二) 1. 判断下列向量集合在向量加法和数乘运算下是否为向量空间,若是向量空 间,试求其维数,并给出一个基. 1) }0,0,,,,),,,,({322154321543211=+=+∈==x x x x x x x x x x x x x x V ,且R α 2) }1,,,),,,({2121212=-∈==x x x x x x x x V n n ,且R α 3) },,){3213322113R ∈++==k k k k k k V αααα,其中)0,1,1(1=α, )1,0,1(2=α,)1,1,2(3=α

2. 已知三维向量空间3R 的一组基)0,1,1(1-=α,)1,0,1(2=α,)1,1,1(3-=α.试 用施密特正交化方法由321,,ααα构造3R 的一组标准正交基. 3. 已知4维向量空间4R 的两个基 (I) ???????====)0,0,1,2()0,0,2,3()3,2,0,0()4,3,0,0(4321αααα, (II) ???????====) 0,1,2,1()2,1,1,2()2,2,1,0()1,0,1,2(4321ββββ 1) 求由基(I)到基(II)的过渡矩阵; 2) 求)4,3,2,1(=α在基(I)下的坐标; 3) 判断是否存在在两组基下坐标相同的非零向量.

4. 已知向量空间3R 的两个基为(I)321,,ααα和(II) 321,,βββ.设3R ∈α在基(I) 与基(II)下的坐标分别为()T 321,,x x x =x ,()T 321,,y y y =y ,且满足 3211x x x y ++=,212x x y +=,13x y =. 1) 求由基(I)变为基(II)的过渡矩阵; 2) 求31ββα+=在基(I)下的坐标.

线性代数教案正式打印版

线性代数教案正式打印 版 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第(1)次课授课时间()

基本内容备注 第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式 ,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b ,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公 式(2)中 2 x的表达式的分子。 于是二元方程组的解的公式又可写为 ? ? ? ?? ? ? = = D D x D D x 2 2 1 1 其中0 ≠ D

线性代数教学大纲2016

中国海洋大学本科生课程大纲 课程属性:公共基础课 课程性质:必修 一.课程介绍 1.课程描述: 线性代数课程是高等院校理科(非数学类专业)、工科、经济和管理各专业(特别是需要数学基础知识较强的相关专业)的一门公共基础课。线性代数主要处理线性关系问题,它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的应用性。通过线性代数课程学习,要求学生掌握该课程的基本理论与方法,为学习相关课程及进一步扩大数学知识面奠定必要的基础。同时,培养学生的逻辑思维能力以及解决实际问题的能力等,还可以提升学生相应的数学素养。 2.课程内容: 主要内容包括:行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量及矩阵的对角化、二次型。 行列式和矩阵是学习解线性方程组的基础,利用行列式,根据克拉默法则可以求解某些非齐次方程组的解;利用行列式可以判定某些齐次线性方程组是否有非零解。行列式也可以判定矩阵是否可逆,并用之求可逆矩阵的逆矩阵;利用矩阵可以判定和求非齐次方程组的解,以及可以求齐次线性方程组的非零解;建立R n的基与向量在基下的坐标及坐标变换,并讨论欧式空间及其结构;讨论矩阵的特征值和特征向量及矩阵 - 1 -

的对角化问题;利用以上理论讨论二次型及其矩阵表示,合同变换与合同矩阵,二次型的秩、惯性定理、标准形和规范形,用正交变换和配方法化二次型为标准形等。 3. 课程与其他课程的关系: 先修课程:无; 并行课程:微积分,高等数学等; 后置课程:概率论与数理统计。在计算机数据结构、算法、计算机图形学、计算机辅助设计、密码学、经济学、网络技术、虚拟现实等课程中,都会涉及到线性代数的相关基础知识。由于理解及知识储备的原因,建议在一年级下学期或者二年级时,学生开始选修《线性代数》。 二、课程目标 本课程目标是为非数学类专业学生学习有关专业课程和扩大数学知识面提供必要的数学基础和基本技能,更旨在通过本课程的学习培养学生的逻辑推理和抽象思维能力、空间直观和想象能力。到课程结束时,学生应能: (1)掌握行列式、矩阵的基本定义及性质等,能够计算行列式的值; (2)理解线性方程组求解理论,掌握向量组的秩、矩阵的秩、线性相关、线性无关等概念,会分析并求解齐次、非齐次线性方程组。 (3)熟练掌握向量的运算,理解R n中的基、坐标、基变换与坐标变换及内积的相关知识; (4)掌握矩阵的特征值和特征向量,矩阵的对角化理论; (5)掌握二次型的标准型和正定二次型的基本概念和理论; (6)能够借助Matlab等计算机软件进行行列式的计算、求解线性方程组等。 三、学习要求 要完成所有的课程任务,学生必须: - 1 -

线性代数教案一例矩阵相乘

线性代数教案一例:矩阵相乘 线性代数,把数代进去。大学数学课程和中学知识脱节严重,教起来很费劲。所以我们可以依据学生在中学学到的数学知识系统和数学知识逻辑,通过知识系统和逻辑的平行对应关系来讲解大学数学里的一些知识难点.这样学生容易理解和接受,教起来也省劲。而这实际上也就是数学上很重要的转化思想。 下面以矩阵的乘积这一知识点来讲解说明。大家可以与《线性代数》同记第四版教材相对照。 三、矩阵与矩阵相乘 设有两个线性变换11111221332211222233y a x a x a x y a x a x a x =++??=++? (3) 转换一下 11121321222311223a a a a a a x y x y x ?? ??????? ??????→ ? ??? ? ?? 对应中学的映射或函数 f x y ?? → 举例 3y x = 111112222112223311322x b t b t x b t b t x b t b t =+??=+??=+? (4) 也转换一下 11122122313211223b b b b b b x t x t x ?? ? ? ??? ???? ????? → ? ??? ? ?? 知识平行对应 g t x ??→ 举例 2x t = 若想求出从12t t 、到12y y 、的线性变换,可将(4)代入(3),便得 111111221133111112122213322221112221233112112222223322()()()()y a b a b a b t a b a b a b t y a b a b a b t a b a b a b t =+++++??=+++++? (5) 转换 1112111213212221222331321122b b a a a b b a a a b b t y t y ?? ?? ? ? ??? ? ?? ???? ????????→ ? ? ???? 对应 ()f g t y ???→ 再化 f g t y ???→ 举例 23y t = 线性变换(5)可看成是先作线性变换(4)再作线性变换(3)的结果。我们把线性变换(5)叫作线性变换(3)与(4)的乘积,相应地把(5)所对应的矩阵定义为(3)与(4)所对应的矩阵的乘积,即 111211121321222122 233132b b a a a b b a a a b b ???? ? ? ??? ? ?? 对应法则的对应 ()f g 注意复合的先后关系 亦即 f g =111112211331111212221332211122212331211222222332a b a b a b a b a b a b a b a b a b a b a b a b ++++?? ?++++?? 对应 f g 那么“=”怎么来:()f g f g = 这样学生理解起来也很简单,容易接受,教学效果好。学生感觉到线性代数也没那么高难,和中学知识区别不大,只是改变了一个形式.不会打消他的积极性。学习兴趣有了,学好线性代数也就不会那么难了。 接下来让学生观察11121112 1321222122 233132b b a a a b b a a a b b ?? ?? ? ? ??? ??? 与111112211331111212221332211122212331211222222332a b a b a b a b a b a b a b a b a b a b a b a b ++++?? ?++++?? 的特征关系,这样定义就自然而然得出来了。

最新清华版线性代数课件线性代数§电子教案

例2计算 n 阶行列式副对角线以上的元素全为0 其中表示元素为任意数解由定义有递推关系递推公式由以上结论容易得到四n 阶行列式的性质行列式 DT 称为行列式 D 的转置行列式记性质1 行列式的行与列互换其值不变即 DT D 性质1说明行列式对行成立的性质都适用于列下面仅对行讨论由性质 1 和前面关于下三角行列式的结果马 上可以得到上三角行列式主对角线以下的元素全为0 的值等于主对角元的积即性质2 行列式按任一行展开其值相等即其中是 D 中去掉第 i 行第 j 列的全部元素后剩下的元素按原来的顺序排成的 n-1 阶行列式称为的余子式称为的代数余子式即性质3 线性性质 1行列式的某一行列中所有的元素都乘以同一数k 等于用数 k 乘此行列式 2 若行列式的某一行 列的元素都是两数之和那么该行列式可以写成两个行列式的和例如 1 若行列式的某一行列的元素都是 n 个数之和那么该行列式可以写成 n 个行列式的和例如说明 2 若行列式的某 m 行列的元素都是两例如说明个数之和那么该行列式可以写成个行列式的和由性质3马上得到推论1 某行元素全为零的行列式其值为零性质4 行列式中两行对应元素全相等其值为 零对行列式的阶数用数学归纳法证明证明当D为二阶行列式时结论显然成立假设当 D 为 n-1 阶行列式时结论成立设行列式 D 的第 i 行和第 j 行元素对应相等则当D为 n 阶行列式时将 D 按第k 行展开得其中为 k-1 阶行列式且有两行元素对应相等故由归纳假设知推论2 行列式中两行对应元素成比例其值为零由性质 3 和性质 4 马上得到性质5 在行列式中把某行各元素分别乘以数 k再加

线性代数教案及讲稿

XXXX学院教案

第一章 行列式 §1.1 2阶行列式和3阶行列式 1. 1)引入(解线性方程组) 在中学课本中我们学习了解二元一次线性方程组,例如解线性方程组: ?? ?=+=+2 731 522121x x x x (1) 我们利用消元法可以求得方程组的解为: 1,321==x x 那么接下来我们将采用另外一种方法来求方程组(1)的解,首先我们记: 0135727352≠-=?-?== D (系数行列式) 325717 2511-=?-?== D 131222 3122=?-?== D 其中 31311=--== D D x 11 122-=-==D D x 再例如解线性方程组: ?? ?=+=+5 728 432121x x x x 解:利用消元法可解得:13 1,133621== x x 那么我们同样才用另外一种方法: 记: 01324737243≠=?-?== D 3654787 5481=?-?== D 182535 2832-=?-?== D

2 ) 提出问题: (1)为什么解决二元一次方程能用这样的方法来解决? (2)如果是n 元一次方程能否用类似的方法来解决呢? 那么为了回答上面的两个问题我们必须学习行列式的概念和性质。 2. 行列式的相关概念: 同样,设有含两个未知数21,x x 的二元一次线性方程组: ?? ?=+=+2 2221211 212111b x a x a b x a x a 其中)2,1,2,1(==j i a ij 是未知数)2,1(=j x j 的系数,)2,1(=i b i 是常数项。 由四个数排成二行二列(横排称行、竖排称列)的数表 当 时,求得方程组的解为 现在我们把方程组得系数提取出来,且保持原来的相对位置不变,排成2行2列的2阶行列式: 2112221122 21 1211a a a a a a a a -= 对角线法则: 我们已经知道了2阶行列式的计算: 2112221122 21 1211a a a a a a a a -= 注:(主对角线上的两个数的乘积-副对角线上的两个数的乘积) 其中数)2,1,2,1(==j i a ij 称为这个行列式的元素简称“元”; 第一个下标i 称为行标,表示该元位于行列式的第i 行。 第二个下标j 成为列标,表示该元位于行列式的第j 列。 那么对应的线性方程组的解为: 2221221122 21 1211a a a a a a a a D -== 122122 111221221 b a a b x a a a a -= -112121********* a b b a x a a a a -= -1122 1221 a a a a -≠22 21 121121122211a a a a a a a a 行列式,并记作称为数表所确定的二阶表达式-22211211a a a a

线性代数教案

《线性代数》 授课教案 代数几何教研室 第一章行列式 本章说明与要求: 行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义; (2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。本章的重点:行列式性质;行列式的计算。 。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。 1 / 205

2 / 205 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题. 设有二元线性方程组 ?? ?=+=+2 2221211 112111b x a x a b x a x a (1) 用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22–a 12a 21≠0 时,有 ??? ??? ?--=--=2112221121 1211221 1222112122211a a a a a b b a x a a a a b a a b x (2) 这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号 2112221122 211211a a a a a a a a -= 为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号. 根据定义,容易得知(2) 中的两个分子可分别写成 222 121212221a b a b b a a b = -,2 21 111211211b a b a a b b a = -, 如果记22 21 1211a a a a D = ,22 2 1211a b a b D = ,2 21 1112b a b a D = 则当D ≠0时,方程组(1) 的解(2)可以表示成

线性代数教案(2015)

线性代数教案(2015)

第一章行列式 1.1 行列式的概念 一、本次课主要内容 介绍行列式的起源,总结学习二阶行列式和三阶行列式,学习全排列和逆序数,归纳n阶行列式的定义。 二、教学目的与要求 掌握二阶、三阶及n阶行列式的概念,掌握逆序数的计算。 三、教学重点难点 1、二阶、三阶行列式的定义、计算; 2、逆序数的计算; 3、n阶行列式的定义。 四、教学方法和手段 课堂讲授、提问、讨论,总结归纳。 五、作业与习题布置 P22 习题1(6)、2(3),3

§1. 1 行列式的概念 对于方程组1111221 2112222 a x a x b a x a x b +=+=?? ?用消元法,当112212210a a a a ≠-方程组有唯一解 122212*********b a b a x a a a a -= -和211121********* b a b a x a a a a -=-。观察上面链各个式子的分母,发现是一 样的。而且两个式子的分子和分母在型式上也是有相似之处的。 一、二阶行列式的概念 设有数表 11 12 2122 a a a a ,两边加上竖线变为 1112 2122 a a a a ,记 1112 112212212122 a a a a a a D a a =-= 注意:2阶的行列式一共能分成2=2!项相加相减(一项加一项减)。每一项里面有2个不同行,不同列的元素相乘。 简单介绍对角线法 其中ij a 表示的是第i 行,第j 列的元素。i 和j 分别称为行坐标和列坐标。D 称为行列式的值,是11221221a a a a -的计算结果。 11 12 2122 a a a a 有两行两列,所以称之为二阶行列式。 如同水有气体,液体,固体三种表现形式一样。一个行列式也可以表现为三种形式:行列式,组成行列式的元素的计算式,和行列式的值。例如: 121122321 =?-?=- 二元一次 方程组的求解公式

线性代数教案 第二章 矩阵及其运算

1 2 m m mn a a a 矩阵。为了表示它是一个整体,总是加一个括号将它界起来,并通常用大写字母表示它。记做 12m m mn a a a ? ?12 m m mn a a a a ??? 。切记不允许使用11 12121 22 212 n n m m mn a a a a a a a a a = A 。 矩阵的横向称行,纵向称列。矩阵中的每个数称为元素,所有元素都是实数的矩阵称为实矩阵,所有元素都是复数的矩阵称为复矩阵。本课中的矩阵除特殊说明外,都指12n n nn a a a ?? 不是方阵没有主对角线。在方阵中,

00nn a ?? 1121 2212000n n nn a a a a a a ?????? (主对角线以上均为零)1122 00000 0nn a a a ????? ???? (既}nn a . 对角元素为1的对角矩阵,记作E 或001???? ()11a ,此时矩阵退化为一个数矩阵的引进为许多实际的问题研究提供方便。 a x +)1(+?n 矩阵: 12 m m mn m a b a a a b ?? 任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方

1 22 m m m mn mn b a b a b ? +++? ? ? ? ???-=4012B ,计算 B A +。 122 m m m mn mn b a b a b ? ---? 与矩阵n m ij a A ?=}{的乘积(称之为数乘),

12 m m mn a a a λλ?? 以上运算称为矩阵的线性运算,它满足下列运算法则:

《线性代数》教学大纲

《线性代数》教学大纲 一、课程概述 1. 课程研究对象和研究内容 《线性代数》是数学中的一个重要分支,是高等工科院校的重要基础理论课。其不仅在数学、力学、物理学和技术学科中有各种重要应用,而且在计算机图形学、计算机辅助设计、密码学、虚拟现实等技术中无不是理论和算法的基础内容。本课程教学内容主要有:行列式;矩阵;n维向量空间;线性方程组;特征值与特征向量;二次型。 通过本课程的学习,能够培养学生对研究对象进行有序化、代数化、可解化的处理方法,并且为其他后续课程打好基础。因此,本课程对学生今后专业的发展具有非常重要的意义。 2. 课程在整个课程体系中的地位 《线性代数》是计算机专业的基础课。《线性代数》的后续课是《离散数学》,《计算方法》等。 二、课程目标 1.知道《线性代数》这门学科的理论和方法及其在专业教育体系中的位置; 2.理解这门学科的基本概念、基本定理和基本方法; 3.熟练掌握行列式、矩阵的运算;会用行列式与矩阵的方法求解齐次线性方程组、非齐次线性方程组的解;学会矩阵的特征值、特征向量及二次型的相关应用; 4.突出计算能力的培养,引导学生进行归纳、对比和思考,培养学生的创造性能力; 5.学会用线性代数的方法处理离散对象; 6.培养运用本学科的基本知识与基本技能分析问题、解决问题的能力;逐步培养学生抽象思维和逻辑推理的能力; 7.通过本课程的学习,协助学生逐步树立辩证唯物主义的观点。 三、课程内容和要求 这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。这四个层次的一般涵义表述如下: 知道———是指对这门学科和教学现象的认知。 理解———是指对这门学科涉及到的概念、原理、策略与技术的说明和解释,能提示所

相关主题
文本预览
相关文档 最新文档