当前位置:文档之家› 弹塑性力学04应力和应变关系汇总

弹塑性力学04应力和应变关系汇总

第四章应力和应变关系

一. 内容介绍

前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。

对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。

本章的任务就是建立弹性变形阶段的应力应变关系。

二. 重点

1. 应变能函数和格林公式;

2. 广义胡克定律的一般表达式;

3. 具有一个和两个弹性对称面的本构关系;

4. 各向同性材料的本构关系;

3. 材料的弹性常数。

§4.1 弹性体的应变能原理

弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求解方法和思路简化,因此能量原理是一个有效的分析工具。

本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。

根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。

探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。

如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。

学习要点:

1. 应变能;

2. 格林公式;

3. 应变能原理。

1. 应变能

弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。本节通过热力学的观点,分析弹性体的功能变化规律。

根据热力学的观点,外力在变形过程中所做的功,一部分将转化为内能,一部分将转化为动能;另外变形过程中,弹性体的温度将发生变化,它必须向外界吸收或释放热量。设弹性体变形时,外力所做的功为d W,则

d W=d W1+d W2

其中,d W1为表面力F s所做的功,d W2为体积力F b所做的功。变形过程中,由外界输入热量为d Q,弹性体的内能增量为d E,根据热力学第一定律,

d W1+d W2=d E - d Q

因为

将上式代入功能关系公式,则

2. 格林公式

如果加载很快,变形在极短的时间内完成,变形过程中没有进行热交换,称为绝热过程。绝热过程中,d Q=0,故有

d W1+d W2=d E

对于完全弹性体,内能就是物体的应变能,设U0为弹性体单位体积的应变能,则由上述公式,可得

设应变能为应变的函数,则由变应能的全微分

对上式积分,可得U0=U0(e ij),它是由于变形而存储于物体内的单位体积的弹性势能,通常称为应变能函数或变形比能。在绝热条件下,它恒等于物体的内能。

比较上述公式,可得

以上公式称为格林公式,格林公式是以能量形式表达的本构关系。

3. 应变能原理

如果加载缓慢,变形过程中物体与外界进行热交换,但物体的温度保持不变,称为等温过程。设等温过程中,输入物体的单位体积热量为d Q,熵的增量为d S,对于弹性变形等可逆过程,根据热力学第二定律,有

因为,d Q=TdS,所以,Q=TS。上式中,T 为绝对温度,TS为输入单位体积的热能。代入公式可得

所以

上式中,E0为物体单位体积的内能,TS为输入的热能,即U0=E0 - TS 。所以在等温条件下,功能公式仍然成立。

上述公式是从热力学第一和第二定律出发得到的,因此它不受变形的大小和材料的性质的限制。

如果材料的应力应变关系是线性弹性的,则由格林公式,单位体积的应变能必为应变分量的齐二次函数。因此根据齐次函数的欧拉定理,可得

用张量表示,写作

设物体的体积为V,整个物体的应变能为

§4.2 广义胡克定义

根据弹性体的应变能函数,可以确定本构方程的能量表达形式。本节的任务是利用应变能函数推导应力和应变的一般关系。

如果将应力分量表达为应变分量的函数,可以得到应力和应变关系的一般表达式。对于小变形问题,这个一般表达式可以展开为泰勒级数。

对于各向同性材料,根据应力与应变的性质,可以得到具有36个常数的广义胡克定理。

学习要点:

1. 应力应变关系的一般表达式;

2. 广义胡克定理。

1. 应力应变关系的一般表达式

由于应变能函数的存在,通过格林公式就可求出应力。本节将通过应变能的推导应力和应变的一般关系。若将应力表达为应变的函数,则应力和应变关系的一般表达式为

这里的函数f i(i=1,2,…,6)取决于材料自身的物理特性。对于均匀的各向同性材料,单向拉伸或压缩时,应力应变关系可以通过实验直接确定。但是对于复杂的应力状态,即使是各向同性的材料,也很难通过实验直接确定其关系。

这里不去讨论如何建立一般条件下的应力应变关系,仅考虑弹性范围内的小变形问题。

对于小变形问题,上述一般表达式可以展开成泰勒级数,并且可以略去二阶以上的高阶小量。

例如将的第一式展开,可得

上式中(f 1)0表达了函数f 1在应变分量为零时的值,根据应力应变的一般关系式可知,它代表了初始应力。

2. 广义胡克定理

根据无初始应力的假设,(f 1)0应为零。对于均匀材料,材料性质与坐标无关,因此函数f 1对应变的一阶偏导数为常数。因此应力应变的一般关系表达式可以简化为

上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。

广义胡克定律中的系数C mn(m,n=1,2,…,6)称为弹性常数,一共有36个。

如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,C mn是坐标x,y,z的函数。

但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。

这一条件反映在广义胡克定理上,就是C mn 为弹性常数。

§4.3 各向异性弹性体的本构关系

本节应用应变能函数推导各向异性材料的本构关系。

对于完全的各向异性弹性体,本构关系有21个弹性常数,

对于具有一个弹性对称面的各向异性材料,本构各向具有13个弹性常数。

对于正交各向异性材料,弹性常数有9个。

正交各向异性材料的本构方程中,正应力仅与正应变有关,切应力仅与对应的切应变有关,因此拉压与剪切之间,以及不同平面内的剪切之间将不存在耦合作用。

学习要点:

1. 完全各向异性弹性体;

2. 有一个弹性对称面的弹性体;

3. 有一个弹性对称面的弹性体本构关系;

4. 正交各向异性弹性体;

5. 正交各向异性弹性体本构关系。

下面从广义胡克定理公式出发,用应变能的概念建立常见的各向异性弹性体的应力和应变关系。

1.完全各向异性弹性体

根据格林公式和广义胡克定律,有

对于上式,如果对切应变g xy求偏导数,有

同理,有

对于上式,如果对正应变e x求偏导数,有

因此,C14=C41。对于其它的弹性常数可以作同样的分析,则C mn=C nm 上述结论证明完全各向异性弹性体只有21个弹性常数。其本构方程为

2.具有一个弹性对称面的各向异性弹性体

如果弹性体内每一点都存在这样一个平面,和该面对称的方向具有相同的弹性性质,则称该平面为物体的弹性对称面。

垂直于弹性对称面的方向称为物体的弹性主方向。

若设yz为弹性对称面,则x轴为弹性主方向。

以下根据完全各向异性弹性体本构方程,推导具有一个弹性对称面的各向异性弹性体的本构方程。

将x轴绕动z 轴转动π 角度,成为新的Ox'y'z'坐标系。

新旧坐标系之间的关系为

x y z x'l1=-1 m1=0 n1=0

y'l2=-1 m2=0 n2=0

z'l3=-1 m3=0 n3=0

根据弹性对称性质。关于x轴对称的应力和应变分量在坐标系变换时保持不变,而关于x轴反对称的应力和应变分量在坐标系变换时取负值。所以

s x' =s x,s y' =s y,s z' =s z,t x'y' =t xy,t y'z' =t yz,t z'x' =t zx

e x' =e x,e y' =e y,e z' =e z,g x'y' =g xy,g y'z' =g yz,g z'x' =g zx

根据弹性主方向性质,作这一坐标变换时,本构关系将保持不变。

根据完全各向异性弹性体的本构方程,将上述关系式

代入广义胡克定理,可得

将上式与广义胡克定理相比较,要使变换后的应力和应变关系保持不变,则必有

C14=C16=C24=C26=C34=C36=C54=C56=0

这样,对于具有一个弹性对称面的弹性体,其弹性常数由21个将减少为13个。具有一个弹性对称面的弹性体的应力应变关系为

3.正交各向异性弹性体

若物体每一点有两个弹性对称面,称为正交各向异性弹性体。以下根据完全具有一个弹性对称面的各向异性弹性体本构方程

推导具有两个弹性对称面的各向异性弹性体的本构方程。设xz平面也是弹性对称面,即y轴也是弹性主方向。在具有一个弹性对称面的基础上,将y轴绕动z轴转动p角度,成为新的Ox'y'z'坐标系, 如图所示

根据弹性对称性质。关于y轴对称的应力和应变分量在坐标系变换时也保持不变,而关于y轴反对称的应力和应变分量在坐标系变换时取负值。所以,则新旧坐标系下的应力和应变分量的关系为

s x' =s x,s y' =s y,s z' =s z,t x'y' =-t xy,t y'z' =-t yz,t z'x' =t zx

e x' =e x,e y' =e y,e z' =e z,g x'y' =-g xy,g y'z' =-g yz,g z'x' =g zx

将上述关于y 轴弹性对称的应力应变关系代入具有一个弹性对称面的各向异性材料本构关系。为保持应力和应变在坐标变换后不变,则必有

C15= C25= C35= C64=0

这样,对于具有二个弹性对称面的弹性体,如图所示

其弹性常数由13个将减少为9个。于是其应力应变关系简化为

假如弹性体有3个弹性对称面,也就是说,如果设xy平面也是弹性对称面,z轴也为弹性主方向,则类似的推导可以证明,本构方程不会出现有新的变化。

因此,如果相互垂直的3个平面中有两个弹性对称面,则第三个必为弹性对称面。

二个弹性对称面的弹性体本构方程表明:如果坐标轴与弹性主方向一致时,正应力仅与正应变有关,切应力仅与对应的切应变有关,因此拉压与剪切之间,以及不同平面内的剪切之间将不存在耦合作用。

这种弹性体称为正交各向异性弹性体,其独立的弹性常数为9个。

§4.4 各向同性弹性体

各向同性弹性体,就物理意义来讲,就是物体各个方向上的弹性性质完全相同,即物理性质的完全对称。该物理意义在数学上的反映,就是应力和应变之间的关系在所有方位不同的坐标系中都一样。

对于各向同性材料,材料性质不仅与坐标轴的选取无关,而且与坐标轴的任意变换方位也无关。根据这一原则,可以确定具有2个独立弹性常数的本构关系。

各向同性材料的本构关系可以通过拉梅(Lamé)弹性常数l,m 表示;也可以通过工程弹性常数E, n, G 表示。

各弹性常数可由实验的方法测定。

学习要点:

1. 各向同性弹性体;

2. 各向同性弹性体的应力和应变关系;

3. 应变表示的本构关系;

4. 弹性常数与应力表示的本构关系。

1. 各向同性弹性体

各向同性弹性体,就其物理意义来讲,就是物体各个方向上的弹性性质完全相同。这一物理意义在数学上的反映,就是应力和应变之间的关系在所有方位不同的坐标系中都一样。

本节将从正交各向异性材料的应力应变公式出发,建立各向同性弹性体的应力和应变关系。对于各向同性材料,显然其材料性质应与坐标轴的选取无关,任意一个平面都是弹性对称面。因此

C11=C22=C33, C12=C23=C31,C44=C55=C66

于是其应力应变关系简化为

其独立的弹性常数仅为C11,C12和C44。

但是各向同性弹性体的弹性常数不但与坐标轴的选取无关,而且与坐标轴的任意变换方位也无关。为了简化分析,将坐标系沿z 轴旋转任一角度j。新旧坐标系之间的关系如下所示:

2. 各向同性弹性体的应力和应变关系

根据应力分量转轴公式,可得

根据应变分量转轴公式

将以上两式代入应力应变关系公式的第四式

因为

所以

根据应力应变表达式,可得

比较上述两个公式,可得,2C44 = C11-C12。所以各向同性弹性体的弹性常数只有两个。其应力和应变关系为

其中

3. 应变表示的本构关系

为了使得各向同性材料的本构关系公式表达简洁,令

则同性材料的本构关系公式可以简化为

或写作张量表达式

弹塑性力学定理和公式

弹塑性力学定理和公式 应力应变关系 弹性模量||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括:a弹性模量单向拉伸或压缩时正应力与线应变之比,即b切变模量切应力与相应的切应变之比,即 c体积弹性模量三向平均应力 与体积应变θ(=ε某+εy+εz)之比,即 d泊松比单向正应力引起的横向线应变ε 的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1弹性常数间的关系。室温下弹性常数的典型值见表3-2弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A各向同性材料的广义虎克定律表达式(见表3-3广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的某、y、z分别用r、

θ、z和r、θ、θ代替。对于平面极坐标,表中平面应力和平面应变公式中的某、y、z用r、θ、z代替。 B用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=某,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,θ。 弹性力学基本方程及其解法 弹性力学基本方程||边界条件||按位移求解的弹性力学基本方法||按应力求解的弹性力学基本 方程||平面问题的基本方程||基本方程的解法||二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程[式(2-1-22)],或用脚标形式简写为 (2)6个变形几何方程[式(2-1-29)],或简写为 (3)6个物性方程[式(3-5)或式(3-6)],简写为 或 2.边界条件

应力应变关系

我所认识的应力应变关系 一 在前面两章的分别学习了关于应力与应变的学习,第三章的本 构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。 在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即 εσ X X E = 在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律 本式应该是91个应变分量 单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。 (1)具有一个弹性对称面的线弹性体的应力应变公式如下

(2)正交各向异性弹性体的弹塑性体公式如下 (3)各向同性弹性体的本构方程 各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足: 111213x x y z C C C σεεε=++ 212223y x y z C C C σεεε=++ 313233z x y z C C C σεεε=++ (2-3) x ε对x σ的影响与y ε对y σ以及z ε对z σ的影响是相同的,即有 112233==C C C ;y ε和z ε对x σ的影响相同,即1213=C C ,同理有2123=C C 和 3132=C C 等 ,则可统一写为: 112233==C C C a =

122113312332=====C C C C C C b = (2-4) 所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。 广义胡可定律如下式 1[()]1[()]1[()]x x y z y y x z z z x y E E E εσνσσεσνσσεσνσσ⎧ =-+⎪⎪ ⎪ =-+⎨⎪⎪=-+⎪⎩ 222xy xy yz yz zx zx G G G τγτγτγ⎧=⎪⎪⎪=⎨⎪ ⎪=⎪⎩ v 泊松比 2(1) E G ν= +剪切模量 E :弹性模量/杨氏模量 虎克定律 E G σε τγ== 对于应变能函数理解有点浅在此就不多做介绍了。 2 屈服条件 拉伸与压缩时的应力——应变关系曲线 P A l l l στ=-= BC CD DE ⎫⎪ ⎬⎪⎭ :屈服阶段 :强化阶段塑性阶段:局部变形阶段

应力应变之间关系

我所认识的应力与应变的关系 弹性与塑性应变的关系: 一维:胡克定律 弹性变形 三维:广义胡克定律 屈服条件应力曾变与增量之间的关系—增量理论 塑性变形 比例变形时全量理论 低碳钢拉伸应力应变曲线: σ O O’ O’’εOB:弹性阶段 BH:屈服阶段 HC:强化阶段 CE:局部变形阶段应力和应变的关系是本构关系,是物质特性的反映。在弹性变形阶段,应力 与应变之间的关系满足胡克定律,即:σ ij =C ijkl ε kl 。应力与应变的关系可以近 似看成线性的,其中C是材料弹性常数,与弹性体内各点的坐标有关,还与温度和方向有关。因此,对于常温下均匀弹性体,材料弹性常数是材料的特性常数。 J.Baushinger效应:强化材料随着塑性变形的增加,屈服极限在一个方向提高而在相反方向降低的效应。其中理想的J.Baushinger效应是:屈服极限在一个方向上提高的数值与在相反方向上降低的数值相等。 应变能函数是物体在外力作用下变形的过程,根本上是一个热力学过称。物体由一种变形状态到另一种变形状态,其中有外力对物体做功,物体与外界交换

能量,物体的总能量发生变化。热力学定律证明,理想弹性体存在应变能,即 udu U ?=。 应变能函数是应变状态的单值函数,仅取决于应变的起始状态和最终状态,与变形过程无关,对于线弹性体,ij ij u εσ21=。格林公式是弹性体的应力分量等于应变能对相应应变分量的偏导数,即ij ij ij u εεσ??=)(,该公式适用于所有弹性体。 应力分析、应变分析的结果适合于连续介质力学的所有问题,与材料物质特性无关。本构关系的影响因素有:材料、环境、加载类型、加载速度,用函数表达式表示为: ),,(T t f εσ= 单一曲线假设认为不管何种应力状态,加载时,应力强度和应变强度的关系是一种单一曲线关系,可由简单加载的应力应变获得。 等向强化模型是认为加载时,在各个方向强化的程度相同。 随动强化模型是认为一个方向强化的程度等于相反方向弱化的程度。 最后是加卸载问题。简单加载定理要满足四点:小变形;材料是不可压缩的;应力强度和应变强度具有幂函数关系,m i i A εσ=(A,m 为常数);外载荷按比例单调增加。 当物体中一点的应力状态满足屈服条件时,则需要建立塑性状态下的应力—应变关系,即塑性本构方程。 塑性流动理论基本思想:它是用应变增量表示弹塑性本构方程的理论。其依据是塑性变形过程中,应力和应变之间没有一一对应的关系,为了反映变形的历史,本构关系应该是用增量的形式给出。 周怒潮 602080706051

弹性力学知识点总结

弹性力学知识点总结 弹性力学是力学的一个重要分支,研究固体物体的变形和回复过程。在本文中,将对弹性力学的几个重要概念和原理进行总结和介绍。 1. 弹性模量 弹性模量是衡量固体物体抵抗形变的能力的物理量。根据胡克定律,弹性模量E可以通过应力σ和应变ε的比值得到:E = σ/ε。其中,应力表示受力物体单位面积上的力的大小,应变表示物体在应力作用下产 生的形变程度。 2. 胡克定律 胡克定律是弹性力学的基本原理,描述了理想弹性体在弹性应变范 围内的力学行为。根据胡克定律,应变与应力成正比。即ε = σ/E,其 中E为杨氏模量。 3. 杨氏模量 杨氏模量是衡量固体材料抗拉性能的物理量,表示固体在单位面积 上受到的拉力与单位长度的伸长量之比。杨氏模量的定义为:E = F/AΔL/L0,其中F为受力物体的拉力,A为受力物体的横截面积,ΔL 为拉伸后的长度增量,L0为原始长度。 4. 泊松比

泊松比是衡量固体材料体积收缩性的物理量。泊松比定义为物体在 一轴方向上受力引起的形变量与垂直方向上的形变量之比。公式表示为:μ = -εlateral/εaxial。 5. 应力-应变关系 弹性力学中的应力-应变关系描述了材料在受力作用下的力学行为。对于弹性材料,应力与应变成线性关系,即应力和应变成比例。 6. 弹性极限 弹性极限是指固体材料可以弹性变形的最大程度。超过弹性极限后,材料将会发生塑性变形。 7. 弹性势能 弹性势能是指物体在形变后能够恢复到初始状态的能力。弹性势能 可以通过应变能来表示,其大小等于物体在受力作用下形变所储存的 能量。 8. 弹性波传播 弹性波是在固体中传播的一种机械波。根据介质的不同,弹性波可 以分为纵波和横波。 9. 斯内尔定律 斯内尔定律描述了弹性力学体系中应力与应变之间的关系。根据斯 内尔定律,弹性变形是由应力和应变之间的线性关系所描述的。 10. 压力容器设计

弹塑性力学04应力和应变关系汇总

第四章应力和应变关系 一. 内容介绍 前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。 本章的任务就是建立弹性变形阶段的应力应变关系。 二. 重点 1. 应变能函数和格林公式; 2. 广义胡克定律的一般表达式; 3. 具有一个和两个弹性对称面的本构关系; 4. 各向同性材料的本构关系; 3. 材料的弹性常数。

§4.1 弹性体的应变能原理 弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求解方法和思路简化,因此能量原理是一个有效的分析工具。 本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。 根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。 探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。 如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。 学习要点: 1. 应变能; 2. 格林公式; 3. 应变能原理。

我所认识的应力应变关系

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 一 应力-应变关系 影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况 本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、 、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、 、z 、、、只有一个自由变化,应力应变关系图1-1。 图1-1 应力应变关系图 图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=, 初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。 从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力

弹塑性力学定理和公式

应力应变关系 弹性模量 ||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力 与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、θ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,θ。 弹性力学基本方程及其解法

弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程[式(2-1-22)],或用脚标形式简写为 (2)6个变形几何方程[式(2-1-29)],或简写为 (3)6个物性方程[式(3-5)或式(3-6)],简写为 或 2.边界条件 弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。 a 应力边界问题在边界Sζ表面上作用的表面力分量为F x、F y、F z.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为 式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。 这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。 b 位移边界问题在边界S x上给定的几何边界条件为 式中,U*i为表面上给定的位移分量。 这一类问题是已知体积力和表面各点的位移,求解体内各点的位移、应变和应力。 c 混合问题部分边界上给定力,部分边界上给定位移。 3.按位移求解的弹性力学基本方法

弹性体应力应变关系

σx=f1 εx,εy,εz,γyz,γxz,γxy σy=f2 εx,εy,εz,γyz,γxz,γxy σz=f3 εx,εy,εz,γyz,γxz,γxy τyz=f4 εx,εy,εz,γyz,γxz,γxy τxz=f5 εx,εy,εz,γyz,γxz,γxy τxy=f6 εx,εy,εz,γyz,γxz,γxy 或者简写为: σi=f i εj,i,j=1,6 满足小变形假设的弹性体,应力可以表示为应变的线性函数: σi=C ijεj,C ij为常数 弹性体的应变能可以表示为: Vε=vεdV V vε为应变能密度,可以表示为: vε=1 σiεi≥0,i=1,6 且满足: σi=evε i 该式称为格林公式,通过热力学第一定律和第二定律导出。 σ1=evε eε1 =C11ε1+C12ε2+C13ε3+C14ε4+C15ε5+C16ε6 σ5=evε 5 =C51ε1+C52ε2+C53ε3+C54ε4+C55ε5+C56ε6 e2vε eε1eε5 =C15 e2vε eε5eε1 =C51 由于偏导的次序可以交换,因此必满足: C15=C51 说明C ij是对称的,则对于各向异性体,具有6+30/2=21个独立的弹性常数。 下面考虑材料性能对称问题。若材料存在对称面,则材料在与该对称面对称的两个方向上具有相同的弹性,称该对称面为弹性对称面,而垂直于弹性对称面的方向称为弹性主方向。例如:设X轴为材料弹性主方向,则OYZ面为弹性对称面,X轴转动180度后,应力与应变 σi′j′=σij n i′i n j′j εi′j′=εij n i′i n j′j

弹塑性力学应力应变关系

我所认识的应力和应变关系 在这之前我认识了应力和应变的概念、性质以及从静力学和几何学的角度出发所得到的平衡方程和几何方程。但是平衡方程仅反映了应力分量和外力分量的关系;几何方程仅建立了位移分量和应变分量的关系。 而谈到应力与应变的关系,对于可变形固体,在弹塑性力学中,在外力的作用下,其将发生变形。变形分为两个阶段,弹性阶段和塑性阶段。在弹性阶段,发生的弹性变形可以完全恢复,它是一个可逆过程。此时,应力与应变的关系是一一对应的,是单值函数关系。而在塑性阶段,所发生的塑性变形是不可以恢复的,是不可逆过程。相对应的,塑性阶段的应力应变的关系是非线性关系,不存在一一对应的关系。 我所认识的应力和应变的关系就是本构关系。本构关系也称为物理关系,它反应的是可变形材料的固有属性,实质上是一组联系力学参数和运动参数的方程式,也就是我们所说的本构方程。 在说应力与应变的关系之前,先说一下本构关系的相关影响因素,包括材料、环境、加载类型、以及加载速度。即,),,(T t f εσ=。另外,有各种各样的本构系,比如:弹性本构关系、塑性本构关系、粘弹性本构关系、粘塑性本构关系、各向同性本构关系、各向同性本构关系等等。 简单情况的本构关系: 应力和应变的关系包括弹性和塑性的应力应变关系。我们所说的是线性弹性体的应力应变关系,又分为简单应力状态和复杂应力状态。在简单拉伸情况下,理想弹性材料的应力和应变的关系很简单,就是材料力学中的胡克定律: 。 而在塑性阶段,应力应变之间不再是简单的胡克定律,而是 。 另外,简单拉伸情况下的卸载定律是 。在后继弹性阶段,也就是卸 载后重新加载的材料会继续发生新的塑性变形,在此时的屈服称为后继屈服,相应的屈服点称为后继屈服点。初始屈服和后继屈服的不同是:第一,应力的数值不一样,后继屈服的应力值更大;第二,屈服点的个数不一样。初始屈服点只有一个,而后继屈服点会有好多个,则其对应的应力值也会有很多个。最后,在卸载全部载荷后进行反向加载比如说把拉伸改成压缩,此时会产生Bauschinger 效应。对于该效应,说明材料在某一个方向的硬化将引起反方向的软化。也就是说,各向同性材料产生塑性变形之后会变成各向异性。此时的弹性阶段的卸载荷压缩 可表示: 。 总结一下材料弹塑性行为的特殊规律大致有以下三点:一是在弹性阶段应力应变的关系是线性的,在塑性阶段它们之间的关系是非线性的;二是应力应变在 εσE =)(εσΦ=εσ∆=∆E - +=s s σσ

劲和材院规律

劲和材院规律 一、引言 劲和材院规律是指在材料力学中所遵循的一些基本规律和原理。在工程实践中,了解和应用这些规律可以帮助我们更好地理解材料的力学行为,从而指导设计和分析工作。本文将从多个方面对劲和材院规律进行探讨,包括应力应变关系、弹性力学、塑性力学和断裂力学等内容。 二、应力应变关系 2.1 应力的定义和分类 应力是指单位面积上的力,常用符号为σ。根据力的作用方向和大小,应力可以 分为正应力、剪应力和法向应力等。正应力是指垂直于面积的力,剪应力是指平行于面积的力,法向应力是指作用在面积上的力的分量。 2.2 应变的定义和分类 应变是指材料在受力下发生的变形程度,常用符号为ε。根据变形方式的不同, 应变可以分为线性应变和体积应变。线性应变是指材料在受力下发生的长度变化与原始长度之比,体积应变是指材料在受力下发生的体积变化与原始体积之比。 2.3 应力应变关系的表示 应力应变关系可以通过应力应变曲线来表示。在弹性阶段,应力与应变呈线性关系,称为胡克定律。在超过材料弹性限度后,应力与应变的关系将不再是线性的,材料会发生塑性变形。 三、弹性力学 3.1 弹性模量 弹性模量是衡量材料抵抗变形的能力的物理量,常用符号为E。根据材料的不同, 弹性模量可以分为杨氏模量、剪切模量和泊松比等。杨氏模量描述了材料在拉伸或压缩时的应力与应变之间的关系,剪切模量描述了材料在受剪切力作用下的应力与应变之间的关系,泊松比描述了材料在受力时横向收缩与纵向伸长的比例关系。 3.2 弹性体的力学性质 弹性体是指在受力后能够完全恢复原来形状和大小的物体。在弹性体的力学性质中,除了弹性模量外,还包括拉伸强度、屈服强度和断裂强度等。拉伸强度是指材料在拉伸过程中最大的抗拉应力,屈服强度是指材料开始发生塑性变形时的应力,断裂强度是指材料发生断裂时的应力。

弹塑性力学 应力和应变之间的关系

我所认识的应力和应变之间的关系 在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。 所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。这类线性弹性体独立的唐兴常数只有两个。 各向同性体本构关系特点:1.主应力与主应变方向重合。2.体积应力与体积应变成比例。 3.应力强度与应变强度成比例。 4.应力偏量与应变偏量成比例。工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ⎧⎡⎤=-+=⎣⎦⎪⎪⎪⎡⎤=-+=⎨⎣⎦⎪⎪⎡⎤=-+=⎪⎣⎦⎩ ,式中分别为弹性模量、泊松比和剪切模量。在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为() 21E G μ=+。 屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。对于加载过程如图1 OA: 比例阶段;线性弹性阶段 AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段 EF : 颈缩阶段;应变弱化,软化阶段 s σσ≥ C 点为初始屈服点具有唯一性。在应力超过屈服应力后,如果在曲线上任意一点D 处卸 载,应力和应变之间将不再遵循原有的加载曲线规 律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变e ε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。若在卸载后重新加载,则曲线基本上仍沿直线O ’D 变化,直至超过D 点的应力之后,才会产生新的塑性变形。由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化现象。为了与初始屈服相区别,我们把机箱发生新的塑性变形时的材料的再次屈服称为后

弹塑性力学名词解释

弹性力学: 1.应力:应力是描述一点内力各个方向上单位面积上的作用力的极限值,由于内力具有多重方向性因而应力也有多重方向性,需要用9个量描述,但表面独立的量有6个,实际上这6个量之间真正独立的只有3个。 2.应变;应变是描述一点的变形程度的物理量,变形包括伸缩和方向改变。一点的应变是一个复杂的物理现象,需要6个量描述,但独立的量只有3个。 3.体积力:作用在物体每一点的外力。比如每一点都有的重力。 4.面力:作用在物体表面的外力。比如水给大坝表面的压力。 5.斜面应力公式:一点任一方向的面上的应力与这一点的6个坐标应力之间的关系,这个关系用于应力边界条件和斜面应力的计算。物体表面的任一点的应力和该点的面力是相同的大小和方向。 6.平衡微分方程:分析一点:反映一点的体积力与该点的6个坐标应力之间的受力平衡的方程,方程是偏微分形式的方程。直角坐标下的方程形式上简单,其它坐标的复杂些。 7.可能应力:满足应力边界条件和平衡微分方程的应力场(该点进入弹塑性阶段时还要满足应力形式的屈服条件),因为应力对应的应变不一定是真实应变,因此只满足应力方程的应力只是可能应力而不一定是真实应力。 8.位移:分析一点:一点变形前后的位置差值。变形体研究的位移是该点空间位置的连续函数。 9.几何方程:分析一点:反映一点位移与该点应变之间关系的方程。直角坐标的几何方程形式上是最简单的,而其它坐标的复杂些。 10.变形协调方程:变形体不出现开裂或堆叠现象,即一点变形后产生的位移是唯一的,这时对一点的应变分量之间的相互约束关系。直角坐标下的方程形式上简单,其它坐标的复杂些。 11.物理方程:这是材料变形的固有性质,反映一点应力与应变之间的约束关系,这种约束关系和坐标选取无关,即各种坐标下的物理关系都是相同的函数。 12.弹性:弹性指物体在外界因素(外荷载、温度变化等)作用下引起变形,在外界因素撤除后,完全恢复其初始的形状和尺寸的性质。 13.完全弹性:材料变形性质只有弹性而没有其他如流变、塑性等变形性质。 14.线弹性:材料变形性质是弹性,且应力应变关系是线性的。 15.应力函数:用于计算应力的函数,该函数满足无体力的平衡微分方程。用应力函数求解弹性力学问题可以减少基本方程的数目,但缺点是方程升阶。 16.平面问题:任何弹性体都是具有一定空间的,但忽略一些次要因素而按平面问题分析,使分析过程变得简单且能满足工程的精度要求,就可以简化为平面问题。 17.平面应力问题:薄板受板面方向的外力且外力沿厚度方向不变,这类问题可以简化为平面应力问题,

弹塑性力学公式合集

弹塑性力学公式合集(总4页) -本页仅作为预览文档封面,使用时请删除本页-

弹性力学假设:连续性假设、均匀性假设、各向同性假设、完全弹性假设、小变形假设、无初应力假设 任意斜截面上的应力Cauchy 公式:T = σ l+ τ m+ τ n 、T = τ l+ σ m+τ n 、T =τ l+τ m+σ n 弹性体的应力边界条件:x yx zx xy y zy xz yz z l m n X l m n Y l m n Z στττστττσ⎫ ++=⎪⎪++=⎬⎪ +++⎪⎭ 主应力、应力张量、不变量 当一点处于某种应力状态时, 在过该点的所有截面中, 一般情况下存在着三个互相垂直的特殊截面, 在这些截面上没有剪应力, 这种剪应力等于零的截面称为过该点的 主平面 , 主平面上的正应力称为该点的 主应力 , 主平面的法线所指示方向称为该点的 主方向 。 静力平衡方程 几何方程: 物理方程 三个基本原理:解的唯一性原理、叠加原理、圣维 南原理。 圣维南原理:由作用在物体局部边界表面上的自平衡力系,所引起的应力和应变,在远离作用区的地方将衰减到可以忽略不计的程度。另一种提法:如果把物体局部边界表面上的力系,使用分布不同但静力等效(主失相等,绕一点的主矩也相等)的力系来代替,则这种等效代换处理使得物体内的应力分布仅在作用区附近有显着影响,而在远离作用区 的地方所受影响很小,可以忽略不计。 为什么要用:1、在弹性力学的边值问题中,要求在边界上任意点,应力与面力相等,方向一致,往往难以满足。2、有时只知道边界面上的合力和合力矩,并不知道面力的分布形式。因此,在弹性力学问题的求解过程中,一些边界条件可以通过某种等效形式提出。 其要点有两处: 一、两个力系必须是按照刚体力学原则的“等效”力系(主矢量和主矩分别等于对应面力的主矢量和主矩); 二、替换所在的表面必须小,并且替换导致在小表 面附近失去精确解。

弹塑性力学-第4章_本构方程

第四章本构方程 在前面的章节中,已经建立了变形体的平衡微分方程和几何方程,分别是从静力学方面和从几何学方面考察了变形体的受力和变形。但是只有这些方程还不足以解决变形体内的应力和变形问题。对于变形体,未知变量包括6个应力分量,6个应变分量和3个位移分量,一共有15个未知函数,而平衡方程和几何方程一共是9个,未知函数的个数多于方程数。因此还必须研究物体的物理性质,即应力与应变之间的关系。通常称这种关系为变形体的本构方程,或称为物性方程。 塑性本构包括三个方面:1、屈服条件,2、流动法则,3、硬化关系;其中屈服条件:判断何时达到屈服,流动法则:屈服后塑性应变增量的方向,也即各分量的比值,硬化规律:决定给定的应力增量引起的塑性应变增量大小。以上构成塑性本构关系。 4.1弹性应变能函数 变形固体的平衡问题不仅需要运动微分方程、应变—位移方程(即变形几何方程)还需要将应变分量和应力张量分量联系起来,方能给定物体的材料抵抗各种形式变形的规律。该规律的理论解释需要对分子间力的本质有深入的认识,该分子力力图使固体粒子间保持—定的距离,也就是需要对固体中应力分量和应变分量有深入的认识。这种作用机理在非常接近稳定状态的气体中己弄清楚,但对于弹性体情况,目前科学技术发展水平还不能解决这一难题。如要通过实验探求物体内部的应力和应变的关系,则总是从一些量的测量来推理得到,在一般情况下,这些量并非应力或应变的分量(例如平均应变、体积压缩、物体表面一线元的伸长等等).因此,在现时应力与应变关系主要是通过直接实验建立。然而该关系中的某些固有的一般特性可以在理沦上加以说朋,如能量守恒定律为应力-应变关系的理论研究提供了基础。 1.1应变能密度 假设变形的过程是绝热的,也就是在变形过程中系统没有热的损失,而且假设物体中任意无穷小单元改变其体积和形状所消耗的功与其从未变形状态到最终变形状态的转换方式无关。这个条件是弹性的另一种定义。换句话说,就是假设物体粒子互相作用过程中的耗散(非保守)力的作用与保守力的作用相比是可以忽略的。满足这个假设的物体在卸载后一定回到其初始尺寸和形状,也就是说该物体是理想弹性的。

弹塑性力学.

应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 在力学上由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的关系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的连系。所以平衡方程与几何方程是两类完全相互独立的方程,它们之间还缺乏必要的联系,这种联系即应力和应变之间的关系。有了可变形材料应力和应变之间关系和力学参数及运动学参数即可分析具体的力学问题。由平衡方程和几何方程加上一组反映材料应力和应变之间关系的方程就可求解具体的力学问题。这样的一组方程即所谓的本构方程。讨论应力和应变之间的关系即可变为一定的材料建立合适的本构方程。 一.典型应力-应变关系 图1-1 典型应力-应变曲线 1)弹性阶段(OC段) 该弹性阶段为初始弹性阶段OC(严格讲应该为CA’),包括:线性弹性分阶段OA段,非线性弹性阶段AB段和初始屈服阶段BC段。该阶段应力和应变满

足线性关系,比例常数即弹性模量或杨氏模量,记作:εσE =,即在应力-应变曲线的初始部分(小应变阶段),许多材料都服从全量型胡克定律。 2)塑性阶段(CDEF 段) CDE 段为强化阶段,在此阶段如图1中所示,应力超过屈服极限,应变超过比例极限后,要使应变再增加,所需的应力必须在超出比例极限后继续增加,这一现象称为应变硬化。CDE 段的强化阶段在E 点达到应力的最高点,荷载达到最大值,相应的应力值称为材料的强度极限 (ultimate strength ),并用σb 表示。超过强度极限后应变变大应力却下降,直到最后试件断裂。这一阶段试件截面积的减小不是在整个试件长度范围发生,而是试件的一个局部区域截面积急剧减小。这一现象称为“颈缩”(necking )。此时,由于颈缩现象的出现,在E 点以后荷载开始下降,直至在颈缩部位试件断裂破坏。这种应力降低而应变增加的现象称为应变软化(简称为软化)。 该阶段应力和应变的关系:)(εϕσ=。 3)卸载规律 如果应力没有超过屈服应力,即在弹性阶段OC 上卸载,应力和应变遵循原来的加载规律,沿CBO 卸载。在应力超过屈服应力后,如果在曲线上任一点D 处卸载,应力与应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ′变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用 OD ′表示总应变ε,O ′D ′表示可以恢复的弹性应变εe ,OO ′表示不能恢复的塑性应变εp ,则有 p e εεε+= (1-1) 即总应变等于弹性应变加上塑性应变。 该阶段应力和应变的关系满足εσ∆=∆E 。 4)卸载后重新加载 DO ′段若在卸载后重新加载,则σ—ε曲线基本上仍沿直线O ′D 变化,直至应力超过D 点的应力之后,才会产生新的塑性变形。由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化(简称为硬化)现象。为了与初始屈服相区别,我们把继续发生新的塑性变形时材料的再度屈服称为后继

我所认识的应力与应变的关系

我所认识的应力与应变的关系 我所认识的本构关系可以从三个不同的受力条件下进行分析,第一是在弹性变形下的应力与应变的关系,第二是在屈服条件下的应力与应变的关系,第三是在塑性条件下的应力与应变的关系,而对应力与应变的关系的研究也可以归结为对本构关系的研究。 首先,弹塑性力学分别从静力学和几何学的角度出发,导出了平衡方程的和几何方程,这些方程均与物体的材料性质(物理性质)无关,因而适用于任何连续介质。但仅仅依靠平衡方程和几何方程来解决实际中的工程问题是不够的。由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的联系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的关系,所以平衡方程与几何方程式两类完全相互独立的方程,他们之间还缺乏必要的联系。对于所求解的问题来讲,因为您未知量的数目多于任何一类方程的个数,所以无法利用这两类方程求的全部未知量。 平衡方程: ⎪⎪⎪⎪ ⎭ ⎪⎪⎪ ⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂222222000t w Z z y x t v Y z y x t u X z y x z zy zx yz y yx xz xy x ρσττρτστρττσ (1) 几何方程: ⎪⎪⎪ ⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂= x w z u z w z v y w y v y u x v x u zx z yz y xy x γεγεγε (2) 为了求解具体的力学问题,还必须引进一些关系式,这些关系式即所谓的本构关系。本构关系反映可变形体材料的固有特此那个,故也称为物理关系,它实际上是一组联系力学参数和运动学参数的方程式,即所谓的本构方程。本构方程实际上就是一组反映可变形体材料应力和应变之间关系的方程。 在单向应力状态下,理想弹性材料的应力和应变之间的关系极其简单。这就是在材料力学中寻出的如下形式的胡克定律: x x E εσ= (3) 胡克定律是一个实验定律,在式(1.1)中的E 是材料性质有关的弹性常数,称为弹性模量和杨氏模量。 在三维应力状态下,描绘一点处的应力状态需要9个应力分量,相应的三维应力状态下,应力与应变之间仍然有类似式(1.1)的线性一一对应关系存在,则称这类弹性体为线性弹性体。对线弹性体,可以把单向应力状态下的胡克定律推广到三维应力状态。推广得到的式子形式形式为

相关主题
文本预览
相关文档 最新文档