当前位置:文档之家› 椭圆经典例题讲解

椭圆经典例题讲解

椭圆经典例题讲解
椭圆经典例题讲解

椭圆

1.椭圆的两种定义

(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.

(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程

(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:

12

22

2=+

b y a x ,其中( > >0,且

=2a )

(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12

22

2=+

b

x a

y ,

其中a ,b 满足: .(3)焦点在哪个轴上如何判断 3.椭圆的几何性质(对

12

22

2=+b y a x ,a > b >0进行讨论)

(1) 范围: ≤ x ≤ , ≤ y ≤

(2) 对称性:对称轴方程为 ;对称中心为 .

(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .

(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;

e 越接近

0,椭圆越接近于 .

(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则

=1PF ,122PF a PF -== 。

4.焦点三角形应注意以下关系(老师补充画出图形):(1) 定义:r 1+r 2=2a

(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )

2

(3) 面积:21F PF S ?=2

1

r 1r 2 sin θ=2

1·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)基础过关

变式训练2:已知P (x 0,y 0)是椭圆122

22=+b

y a x (a >b >0)上的任意一点,F 1、F 2是焦点,

求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切.证明 设以PF 2为直径的圆心为A ,半径为r .

∵F 1、F 2为焦点,所以由椭圆定义知|PF 1|+|PF 2|=2a ,|PF 2|=2r

∴|PF 1|+2r =2a ,即|PF 1|=2(a -r )连结OA ,由三角形中位线定理,知|OA |=

.)(22

1

||211r a r a PF -=-?=故以PF 2为直径的圆必和以长轴为直径的圆相内切.

评注 运用椭圆的定义结合三角形中位线定理,使题目得证。

例3. 如图,椭圆的中心在原点,其左焦点1F 与抛物线2

4y x =-的焦点重合,过1F 的直线

l 与椭圆交于A 、B 两点,与抛物线交于C 、D 两点.当直线l 与x 轴垂直时,22CD

AB

=.(1)求椭圆的方程;

(2)求过点O 、1F ,并且与椭圆的左准线相切的圆的方程;(3)求22F A F B ?的最大值和最小值.

解:(1)由抛物线方程,得焦点1(1,0)F -.

设椭圆的方程:)0(122

22>>=+b a b

y a x .

解方程组241y x

x ?=-?=-?

得C (-1,2),D (1,-2).

由于抛物线、椭圆都关于x 轴对称,∴

1

1||||22||||

FC CD F A AB ==,12||2F A =, ∴2(1,

)2A . …………2分∴

22

1112a b

+=又12

22==-c b a ,因此,2211

112b b

+=+,解得21b =并推得22a =.

典型例题

故椭圆的方程为2

212

x y += . …………4分(2)

2,1,1a b c ===,

圆过点O 、1F ,

∴圆心M 在直线1

2

x =-

上.设1

(,),2M t -

则圆半径,由于圆与椭圆的左准线相切,∴13()(2).2

2

r =---=

由,OM r =3

,2

=

解得t =

∴所求圆的方程为2219

()(.24

x y ++=…………………………8分

(3) 由12(1,0),(1,0)F F -点 ①若AB 垂直于x 轴,则)2

2

,1(),22,

1(---B A ,

222(2,

),(2,22

F A F B ∴=-=--, 2217

422

F A F B ?=-

=…………………………………………9分 ②若AB 与x 轴不垂直,设直线AB 的斜率为k ,则直线AB 的方程为 )1(+=x k y

由??

?=-++=0

22)

1(2

2y x x k y 得 0)1(24)21(2

222=-+++k x k x k

0882>+=?k ,∴方程有两个不等的实数根.

设),(11y x A ,),(22y x B .

2221214k k x x +-=+, 2

22121)

1(2k k x x +-=?………………………………11分

),1(),,1(222112y x B F y x A F -=-=∴

)1)(1()1)(1()1)(1(21221212122+++--=+--=?x x k x x y y x x B F A F

2

212

212

1))(1()1(k x x k x x k +++-++=

2

2

22222

1)214)(1(21)1(2)1(k k

k k k k k +++--++-+= =)21(29

2721172

22k k

k +-=+- 1211

0,121,02

22≤+<

≥+≥k

k k ]27,1[22-∈?∴B F A F ,所以当直线l 垂于x 轴时,B F A F 22?取得最大值2

7

当直线l 与x 轴重合时,B F A F 22?取得最小值1-

变式训练3:在平面直角坐标系xOy 中,已知点A (-1, 0)、B (1, 0), 动点C 满足条件:△ABC 的周长为2+2 2.记动点C 的轨迹为曲线W . (1)求W 的方程;

(2)经过点(0, 2)且斜率为k 的直线l 与曲线W 有两个不同的交点P 和Q , 求k 的取值范围;

(3)已知点M (2,0),N (0, 1),在(Ⅱ)的条件下,是否存在常数k ,使得向量OP OQ +与MN 共线如果存在,求出k 的值;如果不存在,请说明理由. 解:(Ⅰ) 设C (x , y ),

∵ 222AC BC AB +=++2AB =, ∴ 222AC BC +=>,

∴ 由定义知,动点C 的轨迹是以A 、B 为焦点,长轴长为22的椭圆除去与x 轴的两个交点. ∴ 2, =1a c =. ∴ 2221b a c =-=.

∴ W : 2

212

x y += (0)y ≠. … (2) 设直线l 的方程为2y kx =+2

2(2)12x kx +=.

整理,得221()22102k x kx +++=. ①

因为直线l 与椭圆有两个不同的交点P 和Q 等价于 222184()4202

k k k ?=-+=->,解得2k <2k >

∴ 满足条件的k 的取值范围为

2

,(,)22

k ∈

-∞-+∞( (3)设P (x 1,y 1),Q (x 2,y 2),则OP OQ +=(x 1+x

2,y 1+y 2), 由①得12

x x +=. ②

又1212()y y k

x x +=++③

因为 0)M ,(0, 1)N , 所以( 1)MN =-

.……… 所以OP OQ +与MN 共线等价于1212)x

x y y ++. 将②③代入上式,解得k

所以不存在常数k ,使得向量OP OQ +与MN 共线.

例4. 已知椭圆W 的中心在原点,焦点在x 轴上,两条准线间的距离为6. 椭圆W 的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆W 交于不同的两点A 、B ,点A 关于x 轴的对称点为C . (1)求椭圆W 的方程;

(2)求证:CF FB λ= (λ∈R ); (3)求MBC ?面积S 的最大值.

解:(1)设椭圆W 的方程为22

2

21x y a b

+=,由题意可知

222

2

3,26,c a a b c a c ?=??

?=+????=??

解得a =2c =,b =, 所以椭圆W 的方程为22

162

x y +=.……………………………………………4分 (2)解法1:因为左准线方程为2

3a x c

=-=-,所以点M 坐标为(3,0)-.于是可设直线l 的方程为(3)y k x =+.

22

(3),16

2y k x x y =+???+=??得2222

(13)182760k x k x k +++-=. 由直线l 与椭圆W 交于A 、B 两点,可知

2222(18)4(13)(276)0k k k ?=-+->,解得22

3

k <

. 设点A ,B 的坐标分别为11(,)x y ,22(,)x y ,

则21221813k x x k -+=+,2122

276

13k x x k

-=+,11(3)y k x =+,22(3)y k x =+. 因为(2,0)F -,11(,)C x y -,

所以11(2,)FC x y =+-,22(2,)FB x y =+. 又因为1221(2)(2)()x y x y +-+-

1221(2)(3)(2)(3)x k x x k x =+++++ 1212[25()12]k x x x x =+++

22

22

541290[12]1313k k k k k

--=++++ 2222

(5412901236)013k k k k k --++==+,

所以CF FB λ=. ……………………………………………………………10分

解法2:因为左准线方程为2

3a x c

=-=-,所以点M 坐标为(3,0)-. 于是可设直线l 的方程为(3)y k x =+,点A ,B 的坐标分别为11(,)x y ,22(,)x y , 则点C 的坐标为11(,)x y -,11(3)y k x =+,22(3)y k x =+. 由椭圆的第二定义可得

22113||

||||3||

x y FB FC x y +==+, 所以B ,F ,C 三点共线,即CF FB λ=.…………………………………10分

(3)由题意知

1211

||||||||22S MF y MF y =

+ 121

||||2MF y y =?+

121

|()6|2k x x k =++

23||13k k =

+313||||

k k =≤=

+, 当且仅当2

1

3

k =

时“=”成立, 所以MBC ?面积S 的最大值为

32

. 变式训练4:设1F 、2F 分别是椭圆

2

2154

x y 的左、右焦点.

(1)若P 是该椭圆上的一个动点,求21PF ?的最大值和最小值;

(2)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|若存在,求直线l 的方程;若不存在,请说明理由. 解:(1)易知)0,1(),0,1(,1,2,521F F c b a -=∴===

设P (x ,y ),则1),1(),1(2221-+=--?---=?y x y x y x PF PF

35

1

1544222+=--

+x x x ]5,5[-∈x ,

0=∴x 当,即点P 为椭圆短轴端点时,21PF ?有最小值3;

当5±=x ,即点P 为椭圆长轴端点时,21PF PF ?有最大值4

(2)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y

由方程组22

22221(54)5012520054

(5)x y k x k x k y k x ?+

=?+-+-=??=-?

,得

依题意2

5520(1680)055

k k ?=->-

<<,得 当5

5

55<<-

k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则4

5252,455022

2102

221+=+=+=+k k x x x k k x x .4

520)54525()5(22200+-=-+=-=∴k k

k k k x k y

又|F 2C|=|F 2D|122-=??⊥?R F k k l R F

1204204

5251)4520(02

22

222-=-=+-+-

-?=?∴k k k k k k

k k k R

F ∴20k 2

=20k 2

-4,而20k 2

=20k 2

-4不成立, 所以不存在直线l ,使得|F 2C|=|F 2D| 综上所述,不存在直线l ,使得|F 2C|=|F 2D| 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.

2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.

3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.

4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会. 5.解析几何与代数向量的结合,是近年来高考的热点,应引起重视.

小结归纳

高中数学椭圆经典例题(学生+老 师)

(教师版)椭圆标准方程典型例题 例1已知椭圆的一个焦点为(0,2)求的值. 分析:把椭圆的方程化为标准方程,由,根据关系可求出的值. 解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设 条件,运用待定系数法, 求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 分析:(1)由已知可得,再利用椭圆定义求解. (2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程. 解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,, 有, 故其方程为. (2)设,,则.① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方 程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或.

例5已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设在第一象限. 由余弦定理知:·.① 由椭圆定义知:②,则得. 故. 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 分析:关键是根据题意,列出点P满足的关系式. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标

椭圆典型题型归纳(供参考)

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 练习: 1.6=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 2.10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 4.1m =+表示椭圆,则m 的取值范围是 5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的 另一个焦点2F 构成的2ABF ?的周长等于 ; 6.设圆22 (1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例1.方程22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程; 例4.求经过点(2,3)-且与椭圆22 9436x y +=有共同焦点的椭圆方程; 注:一般地,与椭圆22221x y a b +=共焦点的椭圆可设其方程为22 2221()x y k b a k b k +=>-++; (四)定义法求轨迹方程; 例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>

椭圆经典例题讲解

椭圆 1.椭圆的两种定义 (1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在. (2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程 (1) 焦点在x 轴上,中心在原点的椭圆标准方程是: 12 22 2=+ b y a x ,其中( > >0,且 =2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12 22 2=+ b x a y , 其中a ,b 满足: .(3)焦点在哪个轴上如何判断 3.椭圆的几何性质(对 12 22 2=+b y a x ,a > b >0进行讨论) (1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 . (3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: . (4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ; e 越接近 0,椭圆越接近于 . (5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则 =1PF ,122PF a PF -== 。 4.焦点三角形应注意以下关系(老师补充画出图形):(1) 定义:r 1+r 2=2a (2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c ) 2 (3) 面积:21F PF S ?=2 1 r 1r 2 sin θ=2 1·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)基础过关

高中理科椭圆的典型例题

典型例题一 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331-= e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点, OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x ,

由?????=+=-+1012 22y a x y x ,得()0212 22=-+x a x a , ∴222112a a x x x M +=+=,211 1a x y M M +=-=, 41 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF = -12 ,∴115 4 5x ex a AF -=-=. 同理2545x CF -=.∵BF CF AF 2=+,且5 9 =BF , ∴51854554521=??? ??-+??? ? ? -x x ,即821=+x x . (2)因为线段AC 的中点为??? ??+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得() 212 2 21024x x y y x --=-

椭圆双曲线典型例题整理

椭圆典型题 一、已知椭圆焦点的位置,求椭圆的标准方程。 例1:已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2= 2F 1F 2,求椭圆的标准方程。 2.已知椭圆的两个焦点为 F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 二、未知椭圆焦点的位置,求椭圆的标准方程。 例:1. 椭圆的一个顶点为02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。例.求过点(-3,2)且与椭圆x 29+y 24 =1有相同焦点的椭圆的标准方程. 四、与直线相结合的问题,求椭圆的标准方程。 例:已知中心在原点,焦点在x 轴上的椭圆与直线01y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.

五、求椭圆的离心率问题。 例一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 例已知椭圆 19 8 2 2 y k x 的离心率2 1e ,求k 的值. 六、由椭圆内的三角形周长、面积有关的问题 例:1.若△ABC 的两个顶点坐标A (-4,0),B (4,0),△ABC 的周长为18,求顶点C 的轨迹方程。 2.已知椭圆的标准方程是x 2a 2+y 2 25 =1(a >5),它的两焦点分别是 F 1,F 2,且F 1F 2=8,弦 AB 过点F 1,求△ABF 2的周长. 3.设F 1、F 2是椭圆x 29+y 2 4 =1的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=2∶1,求 △PF 1F 2的面积.

人教A版高二数学选修21第二章第二节椭圆经典例题汇总

椭圆经典例题分类汇总 1.椭圆第一定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2 已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由2 1= e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或45-=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ???-≠-<-<-,35,03,05k k k k 得53<

出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围. 解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)4 3,2( ππα∈. 说明:(1)由椭圆的标准方程知 0sin 1>α,0cos 1>-α ,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,α sin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0 例5 已知动圆P 过定点()03,-A ,且在定圆()64322 =+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 分析:关键是根据题意,列出点P 满足的关系式. 解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点, 即定点()03, -A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点, 半长轴为4,半短轴长为7342 2=-=b 的椭圆的方程:17162 2=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法. 2.焦半径及焦三角的应用 例1 已知椭圆13 42 2=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由. 解:假设M 存在,设()11y x M ,,由已知条件得 2=a ,3=b ,∴1=c ,2 1= e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:

椭圆经典练习题两套(带答案)

椭圆练习题1 A组基础过关 一、选择题(每小题5分,共25分) 1.(2012·厦门模拟)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ). A.1 2 B. 2 2 C. 2 D. 3 2 解析由题意得2a=22b?a=2b,又a2=b2+c2 ?b=c?a=2c?e= 2 2 . 答案B 2.(2012·长沙调研)中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x2 81 + y2 72 =1 B. x2 81 + y2 9 =1 C. x2 81 + y2 45 =1 D.x2 81+ y2 36 =1

解析 依题意知:2a =18,∴a =9,2c =1 3×2a ,∴c =3, ∴b 2 =a 2 -c 2 =81-9=72,∴椭圆方程为x 2 81 + y 2 72 =1. 答案 A 3.(2012·长春模拟)椭圆x 2+4y 2=1的离心率为( ). A. 32 B.34 C.22 D.23 解析 先将 x 2+4y 2=1 化为标准方程x 21+y 214 =1,则a =1,b =12,c =a 2-b 2=3 2 . 离心率e =c a =3 2. 答案 A 4.(2012·佛山月考)设F 1、F 2分别是椭圆x 24+y 2 =1的左、右焦点,P 是第一象 限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ). A .1 B.83 C .2 2 D.26 3 解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24 +y 2=1在第一象限的交点, 解方程组???? ? x 2+y 2=3,x 24+y 2 =1,得点P 的横坐标为 26 3 . 答案 D 5.(2011·惠州模拟)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 3 2 ,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G 的方程为( ).

椭圆知识点总结及经典习题.docx

圆锥曲线与方程--椭圆 知识点 一?椭圆及其标准方程 1椭圆的定义:平面内与两定点Fι, F2距离的和等于常数2a ■ F1F21J的点的轨迹叫做椭圆,即点集M={P∣∣PF ι∣+∣PF 2∣=2a,2a>∣F1F2∣=2c}; 这里两个定点F i, F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。 (2a = F1F2时为线段F i F2, 2a C RF?无轨迹)。 2 2 2 2?标准方程:c= a- b 2 2 χ+y _ 1 ①焦点在X轴上:盲TT = 1( a> b> 0);焦点F(± C, 0) a b 2 2 y X ②焦点在y轴上:—2 = 1(a>b>0);焦点F (0, ±C) a b 注意:①在两种标准方程中,总有a> b> 0,并且椭圆的焦点总在长轴上; 2 2 ②两种标准方程可用一般形式表示:X y =1或者mχ2+ny2=1 m n 二?椭圆的简单几何性质: 1. 范围 2 2 (1)椭圆X- y- =1 (a> b> 0)横坐标-a ≤x≤a ,纵坐标-b ≤X≤b a2b2 2 2 (2)椭圆-y2x2 =1 (a>b>0) 横坐标-b ≤X≤b,纵坐标-a ≤x≤a a2b2 2. 对称性 椭圆关于X轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心 3. 顶点 (1)椭圆的顶点:A (-a , 0), A (a, 0), B (0, -b), B- (0, b) (2)线段AA, BB分别叫做椭圆的长轴长等于2a,短轴长等于2b, a和b分别叫做椭

圆的长半轴长和短半轴长。 4 .离心率 (1) 我们把椭圆的焦距与长轴长的比 2c ,即E 称为椭圆的离心率, 2a a e = O 是圆; e 越接近于O (e 越小),椭圆就越接近于圆 e 越接近于1 ( e 越大),椭圆越扁; 注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关 小结一:基本元素 (1) 基本量:a 、b 、c 、e 、(共四个量), 特征三角形 (2) 基本点:顶点、焦点、中心(共七个点) (3) 基本线:对称轴(共两条线) 5 ?椭圆的的内外部 2 2 x 2 y 2 亠 —x o + y o W 1 (1) 点 P(X O , Y O )在椭圆-2 -每=1(a b - 0)的内部 J 2 U2 1 a b a b 2 2 x 2 y 2 亠 X O * y O 彳 (2) 点 P(x 0, y 0)在椭圆-2 =1(a b 0)的外部 2 TT 1. a b a b 6. 几何性质 (1) 点P 在椭圆上, 最大角? F 1PF 2 max =∕F 1 B 2F 2, (2) 最大距离,最小距离 7. 直线与椭圆的位置关系 (1) 位置关系的判定:联立方程组求根的判别式; (2) 弦长公式: ________________________ (3) 中点弦问题:韦达定理法、点差法 记作 e ( 0 < e < 1),

高中数学-椭圆经典练习题-配答案

椭圆练习题 一.选择题: 1.已知椭圆 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C ) A. B. C. D. 3.与椭圆9x 2 +4y 2 =36有相同焦点,且短轴长为4的椭圆方程是( B ) A 4.椭圆的一个焦点是,那么等于( A ) A. B. C. D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A. B. C. D. 6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B ) A. B . C . D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2| 的等差中项,则该椭圆方程是( C )。 A +=1 B +=1 C +=1 D +=1 8.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C ) (A)450 (B)600 (C)900 (D)120 9.椭圆 上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D . 116 252 2=+y x 22143x y +=22134x y +=2214x y +=22 14 y x +=5185 8014520125201 20 252222222 2=+=+=+=+y x D y x C y x B y x 2 2 55x ky -=(0,2)k 1-1512 21(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=22 1254 x y +=16x 29y 216x 212y 24x 23y 23x 24 y 222 1259 x y +=2 3

椭圆练习题(经典归纳)

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点1,22?? ? ??? ,,M N 为平面上关于原点对称的两点,已知N 的 坐标为0,3? - ?? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材P .37 A 组.T3 T4 B组 T2 练习 1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)

(3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设 直线为x my t 。 【反斜截式,1 m k 】不含垂直于y 轴的情况(水平线) 例题:圆C 的方程为:.0222=-+y x (1)若直线过点)(4,0且与圆C 相交于A,B 两点,且2=AB ,求直线方程. (2)若直线过点) (3,1且与圆C 相切,求直线方程. (3)若直线过点) (0,4且与圆C 相切,求直线方程. 附加:4)4(3:22 =-+-y x C )( . 若直线过点)(0,1且与圆C 相交于P 、Q 两点,求CPQ S ?最大时的直线方程. 椭 圆

椭圆练习题(经典归纳)

椭圆练习题(经典归纳)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点12? ?? ,,M N 为平面上关于原点对称的两点,已知N 的坐 标为0,? ?? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设

特别解析:椭圆经典例题分类

特别解析:椭圆经典例题分类 题型一 .椭圆定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:1142 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2 已知椭圆 19822=++y k x 的离心率2 1 =e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12 -=k c .由2 1 =e ,得4=k . 当椭圆的焦点在y 轴上时,92 =a ,82 +=k b ,得k c -=12 . 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或4 5 -=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程 1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ? ??-≠-<-<-,35,03,05k k k k 得53<>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 2 2 =-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.

椭圆经典例题(带答案-适用于基础性巩固)

椭圆标准方程典型例题(参考答案) 例1 已知椭圆0632 2 =-+m y mx 的一个焦点为(0,2)求m 的值. 解:方程变形为 1262 2=+m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2 262=-m ,5=m 适合.故5=m . 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()0122 22>>=+b a b y a x . 由椭圆过点()03, P ,知10922=+b a .又b a 3=,代入得12=b ,92 =a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()0122 22>>=+b a b x a y . 由椭圆过点()03, P ,知10922=+b a .又 b a 3=,联立解得812=a ,92 =b ,故椭圆的方程为198122=+x y . 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b , 故其方程为 ()0136 1002 2≠=+y y x . (2)设()y x A ,,()y x G '',,则 ()0136 1002 2≠'='+'y y x . ① 由题意有??? ????='='33 y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 5 2,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541= PF ,3 5 22=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PF Rt ?中,2 1 sin 12 21==∠PF PF F PF ,

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例 典型例题一 例1 椭圆的一个顶点为()02,A , 其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331- = e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点, M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x , 由?????=+=-+1012 22y a x y x ,得()021222=-+x a x a , ∴22 2112a a x x x M +=+=,2111a x y M M +=-=,

4 1 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的 距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF =-12 , ∴ 115 4 5x ex a AF -=-=. 同理 25 4 5x CF - =. ∵ BF CF AF 2=+,且5 9= BF , ∴ 51854554521=??? ??-+??? ? ? -x x , 即 821=+x x . (2)因为线段AC 的中点为??? ? ?+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 () 2122 21024x x y y x --=-

椭圆典型例题

椭圆典型例题 一、已知椭圆焦点的位置,求椭圆的标准方程。 例1:已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,求椭圆的标准方程。 解:由PF 1+PF 2=2F 1F 2=2×2=4,得2a =4.又c =1,所以b 2=3. 所以椭圆的标准方程是y 24+x 2 3 =1. 2.已知椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 解:由椭圆定义知c =1,∴b =52 -1=24.∴椭圆的标准方程为x 225+y 2 24 =1. 二、未知椭圆焦点的位置,求椭圆的标准方程。 例:1. 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为: 116 42 2=+y x ; 三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。 例.求过点(-3,2)且与椭圆x 29+y 2 4 =1有相同焦点的椭圆的标准方程. 解:因为c 2 =9-4=5,所以设所求椭圆的标准方程为x 2a 2+y 2a 2-5=1.由点(-3,2)在椭圆上知9 a 2+ 4a 2 -5 =1,所以a 2 =15.所以所求椭圆的标准方程为x 215+y 2 10 =1. 四、与直线相结合的问题,求椭圆的标准方程。 例: 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为12 22=+y a x , 由?????=+=-+1012 22y a x y x ,得()0212 22=-+x a x a , ∴222112a a x x x M +=+=,2 11 1a x y M M +=-=,

高中数学椭圆经典例题

椭圆的经典例题 1.已知点A(2,5)、B(3,一1),则线段AB 的方程是( ). (A)6x+y-17=0 (B)6x+y-17=0(x ≥3) (C)6x+y-17=0(x ≤3) (D)6x+y-17=0(2≤x ≤3) 2.(直接法)已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在直线l 的上方,它上面的每一个点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求曲线的方程. 3.(相关点法) 动点M 在曲线x 2+y 2=1上移动,M 和定点B(3,O)连线的中点为P ,求P 点的轨迹方程,并指出点P 的轨迹. 4.已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 5. 已知椭圆0632 2=-+m y mx 的一个焦点为(0,2)求m 的值. 6.已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 7.已知M 是椭圆14 92 2=+y x 上的一点,21,F F 是椭圆的焦点,则||||21MF MF ?的最大值是( ) A 、4 B 、6 C 、9 D 、12 8.点P 为椭圆22 154 x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是 (A )(±2, 1) (B )(2, ±1) (C )(2, 1) (D )(±2 , ±1) 9.已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为 354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

10.求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 11.已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点, α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 12.已知动圆P 过定点()03,-A ,且在定圆()64322 =+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 13.已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 102,求直线的方程. 14.如果椭圆22 1369x y +=弦被点A (4,2)平分,那么这条弦所在的直线方程是

椭圆经典解题思路

椭圆标准方程典型例题 例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值. 分析:把椭圆的方程化为标准方程,由2=c ,根据关系222c b a +=可求出m 的值. 解:方程变形为 126 2 2 =+ m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2262=-m ,5=m 适合.故5=m . 例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法, 求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()012 22 2>>=+ b a b y a x . 由椭圆过点()03,P ,知 1092 2 =+ b a .又b a 3=,代入得12=b ,92 =a ,故椭圆的方程为 19 2 2 =+y x . 当焦点在y 轴上时,设其方程为 ()012 22 2>>=+ b a b x a y . 由椭圆过点()03,P ,知 1092 2 =+ b a .又b a 3=,联立解得812=a ,92 =b ,故椭圆的方程为 19 81 2 2 =+ x y . 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解. (2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC , 知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b , 故其方程为 ()0136 100 2 2 ≠=+ y y x . (2)设()y x A ,,()y x G '',,则 ()0136 100 2 2 ≠'=' + ' y y x . ① 由题意有??? ? ?? ? ='='3 3y y x x , 代入①,得A 的轨迹方程为 ()01324 900 2 2 ≠=+ y y x ,其轨迹是椭圆(除去x 轴上两点).

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

高中数学椭圆题型完美归纳(经典)

椭圆题型归纳 一、知识总结 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形, 可设方程为221(0,0)mx ny m n +=>>不必考虑焦点位置,求出方程。 3.范围. 椭圆位于直线x =±a 和y =±b 围成的矩形里.|x|≤a ,|y|≤b . 4.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 5.顶点 椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.。 长轴的长等于2a . 短轴的长等于2b .

|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,即c 2=a 2-b 2. 6.离心率 7.椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8.椭圆22 221x y a b +=(a >b >0)的焦半径公式10||MF a ex =+,20 ||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ). 9.AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2 OM AB b k k a ?=-,即0 2 02y a x b K AB -=。 )10(<<= e a c e

相关主题
文本预览
相关文档 最新文档