当前位置:文档之家› 教案高中含参不等式的恒成立问题整理版.doc

教案高中含参不等式的恒成立问题整理版.doc

教案高中含参不等式的恒成立问题整理版.doc
教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题

一、用一元二次方程根的判别式

有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结

例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。

例2:已知不等式04)2(2)2(2

<--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2

<--+-x a x a 对于x ∈R恒成立,则只须满足:

(1)???<-+-<-0)2(16)2(4022

a a a 或 (2)??

?

??<-=-=-0

40)2(20

2a a 解(1)得??

?<<-<2

22

a a ,解(2)a =2

∴参数a 的取值范围是-2<a ≤2.

练习 1. 已知函数])1(lg[2

2

a x a x y +-+=的定义域为R ,求实数a 的取值范围。

2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。

3.若不等式的解集是R ,求m 的范围。

4.x 取一切实数时,使3

47

2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2

+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使

恒成立,构造一个新函数

是解题的关键,再利用二次

函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2

,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立;

当0≥?时,如图,0)(≥x F 恒成立的充要条件为:

???

?

???

-≤--≥-≥?1

220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合

结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立?

25a 0

a 25)2(f 0a 2)1(f >??

?<-=<-=得。所以a 的取值范围是),25

(+∞。 解法2:转化为最值研究

4a 1)2a x ()x (f 22-

+-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25

≤<所以。

2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2

3

2a max <-==>>上的最大值在时即,得2a >,所以3a >。

综上:a 的取值范围是),2

5

(+∞。

注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。

2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数

]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+

>?∈<+-。设x

1

x )x (g +=,

注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。

2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。

仿解法1:?∈<)2,1(x ,0)x (f 25a 0

)2(f 0)1(f ≥??

?≤≤得即),25

[:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2

5

a =

也合题。 O

x

y x

-1

例5. 已知:1ax x )x (f 2+-=求使]1,1[x 0)x (f -∈>对任意恒成立的a 的取值范围。 解法1:数形结合结合)x (f 的草图可得:

???????>--<≥-=?<-=?0)1(f 1

2a 04a 04a 22

或或???

????>>≥-=?0)1(f 12a 04a 2得:)2,2(:a 2a 2-<<-的取值范围是即。 解法2:转化为最值研究

4a 1)2a x ()x (f 2

2-

+-= 1. 2a 204a 1)x (f ,2a 212a 12

min <<->-=≤≤-≤≤-得时即,所以2a 2<<-。

2. 若2a ,2a 0a 2)1(f )x (f ,2a 12a

min -<->>+=-=-<-<与得时即矛盾。

3. 若2a ,2a 0a 2)1(f )x (f ,2a 12

a

min ><>-==>>与得则时即矛盾。综上:a 的取值范围是)2,2(-。

解法3:分离参数

1. 0x =时,不等式显然成立,即此时a 可为任意实数;

2. )0,1[x -∈时,x 1x a 01ax x 2+>?>+-。因为)0,1[x 1

x )x (g -+=在上单调递减,所以

2)1(g )x (g a max -=-=>;

3. ]1,0(x ∈时,x 1x a 01ax x 2+

+-。因为x

1

x )x (g +=在(0,1)上单调递减,所以 2)1(g )x (g a min ==<。综上:a 的范围是:)2,2(-。

注:本题中由于x 的取值可正可负,不便对参数a 直接分离,故采取了先对x 分类,再分离参数a ,最后对各类中

求得a 的范围求交集,这与例1方法三中对各类中求得的a 的范围求并集是不同的,应引起注意!

例6. 已知:1ax x )x (f 2+-=,求使0)x (f >对任意]3,3[a -∈恒成立的x 的取值范围。

解:01ax x 0)x (f 2>+->即习惯上视x 为主元而a 为辅元,但本题中是a 在]3,3[-上任意变化时不等式恒成立,故可将a 视为主元。

变更主元法:设1x a x )a (g 2++?-=,则)a (g 的图像为一直线,则]3,3[a ,0)a (g -∈>时恒成立?

??

???>+-=>++=-01x 3x )3(g 0

1x 3x )3(g 22

即x 的范围是:),253()253,(+∞+?---∞ 总之,处理不等式恒成立问题首先应分清谁是主元(哪一个变量在给定区间上任意变化,则该变量即为主元

相当于函数自变量),然后可数形结合或转化为最值研究。若易于将参变量分离的可先分离参变量再求最值,若需分类讨论则应注意分类标准和最后的小结(分清是求交集,还是求并集)。 二、 利用函数的最值(或值域) (1)对任意x 都成立

(2)

对任意x 都成立

。简单计作:大的大于最大的,小的小于最小的。由此看出,本

类问题实质上是一类求函数的最值问题。

例1.已知函数),1[,2)(

2+∞∈++=x x a

x x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。 解:若对任意),1[+∞∈x ,0)(>x f 恒成立,即对),1[+∞∈x ,02)(2>++=

x

a

x x x f 恒成立, 考虑到不等式的分母),1[+∞∈x ,只需022

>++a x x 在),1[+∞∈x 时恒成立而得 而抛物线a x x x g ++=2)(2

在),1[+∞∈x 的最小值03)1()(min >+==a g x g 得3->a 例2 已知a ax x x f -++=3)(2,若2)(],2,2[≥-∈x f x 恒成立,求a 的取值范围.

解析 本题可以化归为求函数f (x )在闭区间上的最值问题,只要对于任意2)(],2,2[m in ≥-∈x f x .若2)(],2,2[≥-∈x f x 恒成立?2)(],2,2[m in

≥-∈?x f x ??????≥-=-=-≤-2

37)2()(2

2

m in a f x f a

或???

????

≥--=-=≤-≤-243)2()(2222

m in a a a f x f a 或?????≥+==>-27)2()(22m in a f x f a ,即a 的取值范围为]222,5[+--. 点评 对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值的方法,只要利用

m x f >)(恒成立m x f >?m in )(;m x f <)(恒成立m x f

设函数是定义在(,)-∞+∞上的增函数,如果不等式2

(1)(2)f ax x f a --<-对于任意[0,1]x ∈恒成立,求实数a 的取值范围。

分析:本题可利用函数的单调性把原不等式问题转化为212ax x a --<-对于任意[0,1]x ∈恒成立,从而转化为二次函数区间最值求解。 解:

()f x 是增函数2(1)(2)f ax x f a ∴--<-对于任意[0,1]x ∈恒成立

212ax x a ?--<-对于任意[0,1]x ∈恒成立

210x ax a ?++->对于任意[0,1]x ∈恒成立,令2

()1g x x ax a =++-,[0,1]x ∈,

所以原问题min ()0g x ?>,又min

(0),0

()(),2022,2g a a g x g a a >???=--≤≤?? <-??即2min 1,0()1,2042,2

a a a

g x a a a - >???=--+-≤≤?? <-?? 易求得1a <。

三、变更主元法

在解含参不等式时,有时若能换一个角度,变参数为主元,可以得到意想不到的效果,使问题能更迅速地得到解决。一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 用一次函数的性质 对于一次函数有:

例题1:已知不等式对任意的都成立,求的取值范围.

解:我们可以用改变主元的办法,将m 视为主变元,原不等式可化为

是关于m 的一次函数。

由题意知解得∴x 的取值范围是

关键点拨:利用函数思想,变换主元,通过直线方程的性质求解。评注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,

则问题转化为求一次函数(或常数函数)

的值在

内恒为负的问题,再

来求解参数应满足的条件这样问题就轻而易举的得到解决了

例2.对任意]1,1[-∈a ,不等式024)4(2

>-+-+a x a x 恒成立,求x 的取值范围。

分析:题中的不等式是关于x 的一元二次不等式,但若把a 看成主元,则问题可转化为一次不等式

044)2(2>+-+-x x a x 在]1,1[-∈a 上恒成立的问题。

解:令44)2()(2

+-+-=x x a x a f ,则原问题转化为0)(>a f 恒成立(]1,1[-∈a )。

当2=x 时,可得0)(=a f ,不合题意。当2≠x 时,应有?

??>->0)1(0)1(f f 解之得31>

故x 的取值范围为),3()1,(+∞-∞ 。

例3 已知对于任意的a ∈[-1,1],函数f (x )=ax 2

+(2a -4)x +3-a >0 恒成立,求x 的取值范围.

解析 本题按常规思路是分a =0时f (x )是一次函数,a ≠0时是二次函数两种情况讨论,不容易求x 的取值范围。因此,我们不能总是把x 看成是变量,把a 看成常参数,我们可以通过变量转换,把a 看成变量,x 看成常参数,

这就转化一次函数问题,问题就变得容易求解。令g (a )=(x 2

+2x -1)a -4x+3在a ∈[-1,1]时,g (a )>0恒成立,则

?

?

?>>-0)1(0

)1(g g ,得133133+-<<--x . 点评 对于含有两个参数,且已知一参数的取值范围,可以通过变量转换,构造以该参数为自变量的函数,利用函数图象求另一参数的取值范围。

例4 对于满足|p|≤2的所有实数p,求使不等式x 2

+px+1>2p+x 恒成立的x 的取值范围。

分析:在不等式中出现了两个变量:x 、P,并且是给出了p 的范围要求x 的相应范围,直接从x 的不等式正面出发直接求解较难,若逆向思维把 p 看作自变量,x 看成参变量,则上述问题即可转化为在[-2,2]内关于p 的一次函数函数值大于0恒成立求参变量x 的范围的问题。

解:原不等式可化为 (x-1)p+x 2

-2x+1>0,令

f(p)= (x-1)p+x 2

-2x+1,则原问题等价于f(p)>0在p ∈[-2,2]上恒成立,故有:

方法一:10(2)0x f -

>?或10

(2)0x f ->??->?

∴x<-1或x>3. 方法二:(2)0(2)0f f ->??>?即?????>->+-0

10

3422x x x 解得:

o y 2 -2 x

y -2 2 x

??

?-<><>1

11

3x x x x 或或∴x<-1或x>3. 例5 已知a ax x x f -++=3)(2,若0)(],2,2[≥-∈x f x 恒成立,求a 的取值范围.

解析 本题可以考虑f (x )的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情

况,即Δ≤0或?????????≥≥--≤->?0)2(0)2(220f f a 或?????????≥≥-≥->?0

)2(0)2(2

20f f a ,即a 的取值范围为[-7,2].

点评 对于含参数的函数在闭区间上函数值恒大于等于零的问题,可以考虑函数的零点分布情况,要求对应闭区间

上函数图象在x 轴的上方或在x 轴上就行了. 设)0()(2

≠++=a c bx ax x f

(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<-

?0

)(2020)(2βββαααf a b

a

b f a b 或或, ],[0)(βα∈

)(0

)(βαf f

(2)当0x x f 在上恒成立?

??>>?0)(0

)(βαf f

],[0)(βα∈-

?????<-?0

)(2020)(2βββαααf a

b

a b f a b 或或 例6 若[]2,2x ∈-时,不等式2

3x ax a ++≥恒成立,求a 的取值范围。

解:设()2

3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。

(1) 当22a -

<-即:4a >时,()()min 2730f x f a =-=-≥ 7

3

a ∴≤又4a >所以a 不存在; (2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ??

=-=--

≥ ???

62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤

(3) 当22

a

-> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又4a <-74a ∴-≤<-

综上所得:72a -≤≤

四、分离参数法

此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:

若对于取值范围内的任一个数都有恒成立,则; 若对于取值范围内的任一个数都有

恒成立,则

.

例1.已知函数),1[,2)(2+∞∈++=x x

a

x x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。 022>++a x x 在),1[+∞∈x 时恒成立,只要x x a 22-->在),1[+∞∈x 时恒成立。而易求得二次函数x x x h 2)(2--=在),1[+∞上的最大值为3-,所以3->a 。

例2.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

4-<

对]4,0(∈x 恒成立,令x

x x x g 2

4)(-=,则min )(x g a < 由14

4)(2

-=

-=x

x

x x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0

注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。

例3 已知函数|54|)(2--=x x x f ,若在区间]5,1[-上,k kx y 3+=的图象位于函数f (x )的上方,求k 的取值范围. 解析 本题等价于一个不等式恒成立问题,即对于543],5,1[2++->+-∈?x x k kx x 恒成立,式子中有两个变量,可以通过变量分离化归为求函数的最值问题. 对于543],5,1[2

++->+-∈?x x k kx x 恒成立3

5

42+++->?x x x k 对于

]5,1[-∈?x 恒成立,令]5,1[,3

5

42-∈+++-=

x x x x y ,设]8,2[,3∈=+t t x ,则],8,2[,10)16(∈++-=t t t y 4=∴t 当,即x =1时2m ax =y , ∴k 的取值范围是k >2.

变式 若本题中将k kx y 3+=改为2)3(+=x k y ,其余条件不变,则也可以用变量分离法解. 由题意得,对于54)3(],5,1[2

2

++->+-∈?x x x k x 恒成立2

2)3(54+++->

?x x x k 对于]5,1[-∈?x 恒成立,令

]5,1[,)3(542

2-∈+++-=

x x x x y ,设]8,2[,3∈=+t t x ,则,169)454(1101622+--=-+-

=t t t

y ]8,2[∈t , 时即当

51,454==∴x t ,169m ax =y , ∴k 的取值范围是k >16

9

. 点评 本题通过变量分离,将不等式恒成立问题转化为求函数的最值问题,本题构造的函数求最值对学生来说有些难度,但通过换元后巧妙地转化为“对勾函数”,从而求得最值. 变式题中构造的函数通过换元后转化为“二次函数型”,从而求得最值.本题也可以用零点分布策略和函数最值策略求解. 五、数形结合法

如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.

例1 已知函数若不等式恒成立,则实数的取值范围

是 .

解:在同一个平面直角坐标系中分别作出函数及的图象,由于不等式

恒成立,

所以函数的图象应总在函数

的图象下方,因此,当

时,

所以

故的取值范围是

例2 当x ∈(1,2)时,不等式(x-1)2

分析:若将不等号两边分别设成两个函数,则左边为二次函数,右边为对数函数,故可以采用数形结合借助图象位置关系通过特指求解a 的取值范围。

解:设T 1:()f x =2

(1)x -,T 2:()log a g x x =,则T 1的图象为右图所示的抛物线,要使对一切x ∈(1,2), ()f x <()

g x 恒成立即T 1的图象一定要在T 2的图象所的下方,显然a>1,并且必须也只需(2)(2)g f > 故log a 2>1,a>1,∴1

例3 若不等式2

3log 0a x x -<在10,3x ??∈ ???

内恒成立,求实数a 的取值范围。

解:由题意知:2

3log a x x <在10,3x ??∈ ???

内恒成立,

在同一坐标系内,分别作出函数2

3y x =和log a y x =

观察两函数图象,当10,3x ??∈ ???

时,若1a >函数

log a y x =的图象显然在函数23y x =图象的下方,所以不成立;

当01a <<时,由图可知,log a y x =的图象必须过点11,33?? ???

或在这个点的上方,则,11log 33a

≥ 1

27

a ∴≥

1127a ∴>≥

综上得:1

127

a >≥ 注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、

下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式

,在

时恒成立,求的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设

然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.

练习1:已知不等式(1)21x m x -<-对()0,3x ∈恒成立,求实数m 的取值范围。 变式:已知不等式(1)21x m x -<-对()0,3m ∈恒成立,求实数x 的取值范围。

x

y

o

1 2

y 1=(x-1)2

y 2=log a x

练习2:已知不等式2

220x ax -+>对x ∈R 恒成立,求实数a 的取值范围。 变式1:已知不等式2

220x ax -+>对[]1,2x ∈恒成立,求实数a 的取值范围。

变式2:已知不等式2

220x ax -+>对[]1,2x ∈-恒成立,求实数a 的取值范围。

含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

绝对值不等式的解法 教案 (1)

绝对值不等式的解法教案 教学目标 (1)掌握与()型的绝对值不等式的解法. (2)掌握与()型的绝对值不等式的解法. (3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力。 (4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力。 教学重点:型的不等式的解法; 教学难点:利用绝对值的意义分析、解决问题. 教学过程设计 教师活动 一、导入新课 【提问】正数的绝对值什么负数的绝对值是什么零的绝对值是什么举例说明【概括】 【不等式的代数意义及几何意义】 学生活动 口答:代数意义 几何意义 |a|的意义是a在数轴上的相应点到原点的距离。

设计意图 绝对值的概念是解与()型绝对值不等式的概念,为解这种类型的绝对值不等式做好铺垫. 【不等式的性质】: ①若a>b ;c∈R 则 a+c>b+c ②若a>b ;c>0 则 ac>bc ③若a>b ;c<0 则 ac

不等式的解集表示为 【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗这个绝对值不等式的解集怎样表示 【质疑】的解集有几部分为什么也是它的解集 【讲述】这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一部分.在解时容易出现只求出这部分解集,而丢掉这部解集的错误. 画出数轴思考答案 不等式的解集为或表示为,或 2、自主演练:解下列不等式 1) | x | < 4 | x | < -1 | x | ≤ 0 2) | x | > 4 | x | > -3 | x | >0 3、抽象概括绝对值不等式的解集答案:{ x | -4 < x < 4 } Ф 答案:{ x | x>4,或x<-4 } R

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

最新高中数学-含绝对值的不等式的解法教案

收集于网络,如有侵权请联系管理员删除 一.课题:含绝对值的不等式的解法 二.教学目标:掌握一些简单的含绝对值的不等式的解法. 三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次) 不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间 的交、并等各种运算. 四.教学过程: (一)主要知识: 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2.当0c >时,||ax b c ax b c +>?+>或ax b c +<-,||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. (三)例题分析: 例1.解下列不等式: (1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->. 解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为17[2,) (,5]22--. (2)原不等式可化为22(2)(1)x x -<+,即12x > ,∴原不等式解集为1[,)2+∞. (3)当12x ≤- 时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122 x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53 x >,此时2x ≥. 综上可得:原不等式的解集为(,1)(1,)-∞-+∞. 例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞; (2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞. 解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|3x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <; (2)与(1)同理可得|1||3|4x x --+≤,∴4a >. 例3.(《高考A 计划》考点3“智能训练第13题”)设0,0a b >>,解关于x 的不等式:|2|ax bx -≥. 解:原不等式可化为2ax bx -≥或2ax bx -≤-,即()2a b x -≥①或2()2a b x x a b +≤?≤ +②,

人教版必修五含参不等式和恒成立问题(含答案)

含参不等式专题 一、一元二次不等式含参问题 含参不等式的解法:由于解含参数不等式的主要目的是求未知数的取值集合,而不是求参数的范围,因此在分析含参数不等式时,把参数看成 是常数,确定不等式的类型,按相应类型不等式的解题方法进行转化;但 在求解过程中要审视参数对不等式类型、同解变形、解的结构等是否有不 确定性影响,若有不确定性则进行分类讨论,否则不予讨论。 解含参数的一元二次不等式,通常情况下,均需分类讨论,对含参一元二次不等式常用的分类方法有三种: (1)按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; (2)按判别式?的符号分类,即0,0,0?; (3)按方程02=++c bx ax 的根21,x x 的大小来分类,即2121,x x x x =<; 例题1:解x 的不等式:(1)042 >++ax x 。 (2) )(0122 R a a ax ∈>++ 例题2:解关于x 的不等式:(1).01)1(2 <++-x a ax (2) )(0)1(2 R k x k kx ∈>-+ 例题3:解不等式(1))0( 01)1(2≠<++-a x a a x . (2) ) (R a x ax ∈≥++22 2 二、一元二次不等式恒成立问题 1、不等式对任意实数恒成立,就是不等式的解集为R ,对于一元二次不等式ax 2+bx +c >0, 它的解集为R 的条件为??? a >0Δ<0;ax 2+bx +c <0的解集为R 的条件为??? a <0 Δ<0 ;0 2≥++c bx ax 的解集为R 的条件为?? ?≤?>00a ;02≤++c bx ax 的解集为R 的条件为???≤?<0 a . 2、对于一般恒成立问题: 方法一:转化为函数的最值(或值域)(1)m x f ≥)(对任意x 都成立 m x f ≥?min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥?。简单计作:“大 的大于最大的,小的小于最小的”。 方法二:数形结合,如果不等式中涉及的函数、代数式对应的图象、图 形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围. 方法三:分离参数,把要求的参变量分离出来,单独放在不等式的一侧, 将另一侧看成新函数,于是将问题转化成新函数的最值问题;(1)对于取 值范围内的任一个数都有恒成立,则;(2)对于取值范围内的任一个数都有 恒成立,则 例题1:若)5lg(2b x x y --=的定义域为R,求b 范围。 例题2:已知关于x 的不等式01)2()2(2≥+---x a x a 恒成立,试求a 的取值范围. 例题3:已知1)(2+-=ax x x f ,求使不等式0)(++a ax x 2、解关于x 的不等式0)1(2>++-a x a x 3、解关于x 的不等式:04)1(22>++-x a ax 4、不等式x p xp x 212->++ 对),1(+∞∈x 恒成立,求p 的范围。 5、已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

湘教版八年级数学上册《一元一次不等式的解法》教案

《一元一次不等式的解法》教案 第1课时 教学目标 知识与技能:知道一元一次不等式的标准形式,理解不等式的解与解集的概念,了解什么是一元一次不等式. 过程与方法:理解用不等式的性质解一元一次不等式的基本方法,会熟练的解一元一次不等式. 情感态度与价值观:培养学生的分析能力.训练学生的动手能力,提高综合分析解题能力、转化的数学思想.通过本节的学习,进一步渗透化归的数学美. 教学重难点 重点:一元一次不等式的解法. 难点:不等式的两边同乘以(或除以)一个负数. 教学过程 一、创设情境,导入新课 动脑筋: 水果批发市场的梨每千克3元,苹果每千克4元,小王购进50千克梨后还想购进些苹果,但他只有350元,他最多能买多少千克苹果? 思考: 1、买梨子用去的钱和买苹果用去的钱以及身上有的350元钱有什么关系? 买梨子用去的钱_____买苹果用去的钱_____身上有的350元钱. 2、若设他买了x千克苹果可以列出关系式:_____________________ 3、这个关系式有什么特点呢?(含有___个未知数,且未知数的次数为____)这样的不等式叫什么不等式?你认为呢? 含有___个未知数,且未知数的次数为____的不等式叫_______不等式. 4、请你把一元一次不等式的概念与一元一次方程的概念对比,看看它们有什么异同? 5、什么叫一元一次方程的标准形式?_________,__________,由此请你猜想什么是一元一次不等式的标准形式? ________________________叫一元一次不等式的标准形式. 怎样求出小王最多能买多少千克苹果呢?只需要解上面的一元一次不等式,这节课我们来研究一元一次不等式的解法. 二、合作交流,探究新知 1、不等式的解和解集的概念

备战2018高考数学黄金解题模板 含参不等式的存在性与恒成立问题

备战2018高考数学黄金解题模板 含参不等式的存在性与恒成立问题 【高考地位】 含参不等式的恒成立问题越来越受到高考命题者的青睐,由于新课标高考对导数应用的加强,这些不等式的恒成立问题往往与导数问题交织在一起,这在近年的高考试题中不难看出这个基本的命题趋势. 解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,在高考中各种题型多以选择题、填空题和解答题等出现,其试题难度属高档题. 【方法点评】 方法一 判别式法 使用情景:含参数的二次不等式 解题模板:第一步 首先将所求问题转化为二次不等式; 第二步 运用二次函数的判别式对其进行研究讨论; 第三步 得出结论. 例1 设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围 . ??? ????-≤--≥-≥?1220)1(0m F 解得23-≤≤-m 。 综上可得实数m 的取值范围为)1,3[-. 【点评】一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立 ????00a ;2)0)(

(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+有解,求实数m 的取值范围. 【答案】(1)()21f x x x =-+;(2)(),5m ∈-∞. (2)∵在区间[]1,1-上,不等式()2f x x m >+有解, ∴2 31m x x <-+在区间[]1,1-上有解, 故只需m 小于函数()231g x x x =-+在区间[]1,1-上的最大值, 由二次函数可知当1x =-时,函数()g x 取最大值5, ∴实数m 的取值范围为()5-∞, 考点:1、求二次函数解析式;2、不等式能成立问题. 【方法点睛】本题首先考查二次函数解析式,已知函数类型求解析式时,可以采用待定系数法,第二问考

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题 一、用一元二次方程根的判别式 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结 例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022 a a a 或 (2)?? ? ??<-=-=-0 40)2(20 2a a 解(1)得?? ?<<-<2 22 a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习 1. 已知函数])1(lg[2 2 a x a x y +-+=的定义域为R ,求实数a 的取值范围。 2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。 3.若不等式的解集是R ,求m 的范围。 4.x 取一切实数时,使3 47 2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2 +-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使 在 恒成立,构造一个新函数 是解题的关键,再利用二次 函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2 ,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ? ??? -≤--≥-≥?1 220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合 结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立? 25a 0 a 25)2(f 0a 2)1(f >?? ?<-=<-=得。所以a 的取值范围是),25 (+∞。 解法2:转化为最值研究 4a 1)2a x ()x (f 22- +-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25 ≤<所以。 2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2 3 2a max <-==>>上的最大值在时即,得2a >,所以3a >。 综上:a 的取值范围是),2 5 (+∞。 注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。 2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数 ]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+ >?∈<+-。设x 1 x )x (g +=, 注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。 仿解法1:?∈<)2,1(x ,0)x (f 25a 0 )2(f 0)1(f ≥?? ?≤≤得即),25 [:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2 5 a = 也合题。 O x y x -1

一元一次不等式的解法 优秀课教案

2.4一元一次不等式 第1课时一元一次不等式的解法 1.理解一元一次不等式、不等式的解 集、解不等式等概念; 2.掌握一元一次不等式的解法.(重点, 难点) 一、情境导入 1.什么叫一元一次方程? 2.解一元一次方程的一般步骤是什 么?要注意什么? 3.如果把一元一次方程中的等号改为 不等号,怎样求解? 二、合作探究 探究点一:一元一次不等式的概念 【类型一】一元一次不等式的识别 下列不等式中,是一元一次不等 式的是() A.5x-2>0 B.-3<2+ 1 x C.6x-3y≤-2 D.y2+1>2 解析:选项A是一元一次不等式,选项 B中含未知数的项不是整式,选项C中含有 两个未知数,选项D中未知数的次数是2, 故选项B,C,D都不是一元一次不等式, 所以选A. 方法总结:如果一个不等式是一元一次 不等式,必须满足三个条件:①含有一个未 知数,②未知数的最高次数为1,③不等号 的两边都是整式. 【类型二】根据一元一次不等式的概 念求值 已知- 1 3x 2a-1+5>0是关于x的一 元一次不等式,则a的值是________. 解析:由- 1 3x 2a-1+5>0是关于x的一 元一次不等式得2a-1=1,计算即可求出a 的值,故a=1. 方法总结:利用一元一次不等式的概念 列出相应的方程求解即可.注意:如果未知 数的系数中有字母,要检验此系数可不可能 为零. 探究点二:一元一次不等式的解法 【类型一】一元一次不等式的解或解 集 下列说法:①x=0是2x-1<0的 一个解;②x=-3不是3x-2>0的解;③ -2x+1<0的解集是x>2.其中正确的个数 是() A.0个B.1个 C.2个D.3个 解析:①x=0时,2x-1<0成立,所 以x=0是2x-1<0的一个解;②x=-3时, 3x-2>0不成立,所以x=-3不是3x-2 >0的解;③-2x+1<0的解集是x> 1 2,所 以不正确.故选C. 方法总结:判断一个数是不是不等式的 解,只要把这个数代入不等式,看是否成 立.判断一个不等式的解集是否正确,可把 这个不等式化为“x>a”或“x<a”的形 式,再进行比较即可. 【类型二】解一元一次不等式 解下列一元一次不等式,并在数 轴上表示: (1)2(x+ 1 2)-1≤-x+9; (2) x-3 2-1> x-5 3. 解析:按照解一元一次不等式的基本步

含参不等式的解法复习课教案

含参不等式的解法复习课教案 授课内容:含参不等式的解法复习课 教学目标 1.通过复习使学生进一步掌握一些简单的含有参不等式的基本解法;并让学生了解使用分类讨论方法的起因. 2.培养学生分析、概括能力及运算能力. 3.提高学生思维的严谨性和深刻性. 教学重点与难点 教学重点:含有字母系数不等式的求解基本模式的形成. 教学难点:分类讨论方法的正确使用. 教学设想:先通过一组基础题的讨论练习,使学生从中体会含参不等式的解法,树立分类讨论的意识,然后再通过典型例题的分析讲解,使学生进一步掌握解含参不等式的基本解法,明确分类讨论的依据和标准,最后再通过练习加以强化。 教学过程: 一、基础题组练习 解下列关于x的不等式 1. 2.

3. 4. 设置本组练习旨在唤醒学生的解题意识及方法,使其对解含有参数的不等式有一个初步的体会和认识。 学生分组解答、交流结果,之后教师订正。 二、 典型例题分析 例1 解关于x 的不等式: 分析:本题为含有参数的绝对值不等式,移项后得: , 此时,要脱去绝对值符号,就必须要对 的值进行讨论。 分析清楚后由学生合作完成。 例2 已知函数 b ax x x f +=2)((a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 2=3, x 2=4.(1)求函数f(x)的解析式; (2)设k>1,解关于x 的不等式;x k x k x f --+<2)1()(. 分析:本题第二问为含参的分式不等式,需要对参数进行讨论,要根据条件正确划分分类标准,确保穷尽所有可能情形。 分析完后学生先做,之后教师进行订正,并强调注意事项。 例3 解关于x 的不等式: 分析:该不等式的基本类型为含参的分式不等式,可通过移项通分调整系数数轴标根几步完成,但在调整系数及标根时,涉及到对

八年级数学下册 一元一次不等式的解法教案

2.4 一元一次不等式 第1课时 一元一次不等式的解法 1.理解一元一次不等式、不等式的解 集、解不等式等概念; 2.掌握一元一次不等式的解法.(重点,难点) 一、情境导入 1.什么叫一元一次方程? 2.解一元一次方程的一般步骤是什么?要注意什么? 3.如果把一元一次方程中的等号改为不等号,怎样求解? 二、合作探究 探究点一:一元一次不等式的概念 【类型一】 一元一次不等式的识别 下列不等式中,是一元一次不等 式的是( ) A .5x -2>0 B .-3<2+1 x C .6x -3y ≤-2 D .y 2+1>2 解析:选项A 是一元一次不等式,选项B 中含未知数的项不是整式,选项C 中含有两个未知数,选项D 中未知数的次数是2,故选项B ,C ,D 都不是一元一次不等式,所以选A. 方法总结:如果一个不等式是一元一次不等式,必须满足三个条件:①含有一个未知数,②未知数的最高次数为1,③不等号的两边都是整式. 【类型二】 根据一元一次不等式的概念求值 已知-13 x 2a - 1+5>0是关于x 的一 元一次不等式,则a 的值是________. 解析:由-13x 2a - 1+5>0是关于x 的一 元一次不等式得2a -1=1,计算即可求出a 的值,故a =1. 方法总结:利用一元一次不等式的概念列出相应的方程求解即可.注意:如果未知数的系数中有字母,要检验此系数可不可能为零. 探究点二:一元一次不等式的解法 【类型一】 一元一次不等式的解或解集 下列说法:①x =0是2x -1<0的 一个解;②x =-3不是3x -2>0的解;③-2x +1<0的解集是x >2.其中正确的个数是( ) A .0个 B .1个 C .2个 D .3个 解析:①x =0时,2x -1<0成立,所以x =0是2x -1<0的一个解;②x =-3时,3x -2>0不成立,所以x =-3不是3x -2>0的解;③-2x +1<0的解集是x >1 2,所 以不正确.故选C. 方法总结:判断一个数是不是不等式的解,只要把这个数代入不等式,看是否成立.判断一个不等式的解集是否正确,可把这个不等式化为“x >a ”或“x <a ”的形式,再进行比较即可. 【类型二】 解一元一次不等式 解下列一元一次不等式,并在数 轴上表示: (1)2(x +1 2)-1≤-x +9; (2)x -32-1>x -53 . 解析:按照解一元一次不等式的基本步

含参不等式恒成立问题中,求参数取值范围一般方法

含参不等式恒成立问题中,求参数取值范围一般方法 恒成立问题是数学中常见问题, 也是历年高考的一个热点。大多是在不等式中,已知一 个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若 a_ f x 恒成立,只须 求出 f X max ,则 a - f X 血;若 ^ f X 恒成立,只须求出 f X min ,则 a 乞 f X 讪, 转化为函数求最值。 例1已知函数f X = lg I X a -2,若对任意x := 2川a?恒有f X \ >0,试确定a 的 I x 丿 取值范围。 a 解:根据题意得:x 2 1在x := 12,牡阳上恒成立, x 即:a ?-X 2 ? 3x 在 x :二 2,上恒成立, 设 f x = -x 2 3x ,则 f x - - x- 3 9 I 2丿4 当 X =2时,f X max =2 所以 a 2 在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不 等式的两边,即:若 f (a )Z g (x )恒成立,只须求出g (x )max ,则f (a )K g (x )m ax ,然后 解不等式求出参数 a 的取值范围;若f (a )兰g(x)恒成立,只须求出g (x ).,则 f (a )兰g( x m in ,然后解不等式求出参数 a 的取值范围,问题还是转化为函数求最值。 t +1 f t p 3 f t min = f 2 — 4 解:令2二t ,二,1丨■ 10,2所以原不等式可化为: 宀亠1 , 例2、已知x^- ,11时,不等式1 ■ 2X 亠〔a -a 2 4X 0恒成立,求a 的取值范围。 要使上式在t 三i 0,2 1上恒成立,只须求出 在t 0,2 1上的最小值即 可。 t 十1 f t 〒 1 3 a :: 2 2 _a ::-

含参不等式

《不等式(组)的字母取值范围的确定方法》教学设计 教材分析:本章内容是北师大新版八年级数学(下)第二章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用口诀或数轴直观的得到一元一次不等式组的解集。 学情分析:在学习了一元一次不等式组的解法之后,学生就会经常遇到求一元一次不等式组中字母系数的值或求其取值范围的问题. 不少学生对解决这样的问题感到十分困难. 事实上,只要能灵活运用不等式组解集的知识即可顺利求解. 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握逆向思维和数形结合的数学思想。 学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。 (2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。 教学准备 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:大大取大;小小取小;大小小大中间找;大大小小找不到. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 1、⑴不等式组???-≥>1 2x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组?? ?≥≤14x x 的解集是 . ⑷不等式组???-≤>45x x 的解集是 . 一、已知不等式的解集确定字母系数的问题 1. 逆向运用“大大取大”求解参数 分析:逆向运用大大取大归结为:若不等式组???>>b x a x 的解集为b x >,则b a ≤ 例1.(2014恩施市) 如果一元一次不等式组???>>a x x 3的解集为a x >,则a 的取值范围是:( ) A. a >3 B. a ≥3 C. a ≤3 D. a <3 变式练习1:若不等式组? ??<->+m x x x 544的解集是3

含参不等式恒成立问题资料

不等式中恒成立问题的解法研究 在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。 恒成立问题的基本类型: 类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立 ?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立???>>?0)(0 )(βαf f ],[0)(βα∈- ?????<-?0)(2020)(2βββαααf a b a b f a b 或或 类型3: α α>?∈>min )()(x f I x x f 恒成立对一切αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0)(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 若a<0时,可以先将二次项系数化为正数,对照上表求解. 3高次不等式的解法 如果一元 n 次不等式 a o x n + a 1X n 1+ …+ a n >0(a o 工 0, n € N *, n > 3)可以转化为 a °(x — X 1)(x — X 2)…(X — X n )>0(其中X 10时,由于f(x) = a o (x — X 1)(X — X 2)…(X — X n )的值的符号在上述区间自右至 左依次为+、一、+、一、…,所以正值区间为 f(x)>0的解集. 4分式不等式的解法 f x (1) g T>0(<0) ? f(x) g(x)>0(<0); y x f x f x g x > 0 < 0, (2严> 0( < 0)? g x g x 工 0. 总基础点重难点 1 不等式ax>b 若a>0,解集为x | x>-;若a<0,解集为 x | xv-;若a = 0,当b > 0时,解集为?,当b<0 a a — 时,解集为R. 2 一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式 集,可归纳为: ax 2 + bx + c>0 与 ax 2 + bx + c<0 的解 判别式 △= b 2 — 4ac 二次函数 y = ax 2 + bx + c (a>0)的图象 元二次方程 ax 2 + bx + c = 0 有两相异实根 有两相同实根 无实根 二次 不等 式的 解集 (a ^ 0)的根 ax 2 + bx + c>0(a>0) ax 2+ bx + c<0(a>0) X = X 1 或 X = X 2 X = X 1= X 2 {xxX 2} {X|X 1VX

相关主题
文本预览
相关文档 最新文档