当前位置:文档之家› 热能动力锅炉燃料及燃烧分析

热能动力锅炉燃料及燃烧分析

热能动力锅炉燃料及燃烧分析
热能动力锅炉燃料及燃烧分析

热能动力锅炉燃料及燃烧分析

想要更好的实现电厂的稳定运行,提升生产的效率,对热能动力锅炉燃料以及燃烧进行分析有着重要的意义。基于此,本文分析了热能动力锅炉燃料,说明了热能动力锅炉燃料燃烧特性,阐述了热能动力锅炉燃料燃烧的具体形式以及过程。

标签:热能动力锅炉;燃料;燃烧

随着人们对于电能的要求增多,电厂的建设得到了较好的发展。在现当代企业中,为了确保生产的持续进行,对于自备电厂的建设更加重视。在电厂的实际运行中,会消耗大量的能源,为了实现节能减排的目标,必须对新型的燃烧调控技术进行探究。现阶段,通过应用新型的燃烧技术以及性能更好的热能动力锅炉,有效缓解了资源短缺的问题。想要更好的实现电厂的健康运行,对热能动力锅炉燃料以及燃烧进行分析有着重要的意义。本文结合山西兆丰铝电有限责任公司自备电厂的实际情况,对热能动力锅炉燃料及燃烧进行分析,为相关工作人员提供参考。

1 热能动力锅炉燃料分析

在电厂的实际运行生产过程中,燃料会在锅炉内得到充分的燃烧,实现燃料化学能、热能的传递与转化。在实际的能量传递中,会通过中间介质完成传递。一般情况下,在进行中间介质的选择与使用中,普遍会应用水作为能量传递的中间介质。在温度升高的条件下,水会转化为水蒸气;当达到特定的压力后,燃料中的化学能就被转化为蒸汽的热能,结合发电机,就能实现电能的转换。就本质上来说,电厂锅爐属一种换热器装置,其能够从不同功能的方面获取能量。但是电厂热能动力锅炉的燃料就有着一定的特定性。一般情况下,热能动力锅炉在燃烧中,会使用煤作为主要的燃料。由于煤燃烧释放的热能将对相较高,能够更好的满足水转化为水蒸气的实际温度需求,确保了压力符合标准,保障了热能动力锅炉的正常运行。

2 热能动力锅炉燃料燃烧特性分析

对于不同的燃料来说,其存在着不同的性质,所以其实际的燃烧过程也存在着一定的差异;对于煤炭等燃料来说,若是实际燃烧的温度高于自身的温度时,就能够进入较为稳定的燃烧状态。在热能动力锅炉的燃料燃烧过程中,相比于煤炭等固体燃料,对于气体燃料的燃烧方式有着更高的要求。热能动力锅炉的气体燃料燃烧主要有三种形式:无焰燃烧、短焰燃烧以及长焰燃烧。其中,无焰燃烧主要是通过在进入烧嘴前燃料就与空气进行融合来实现的;短焰燃烧主要方式为在燃烧初期燃料与空气部分混合,在燃烧时,部分气体燃烧、另一部分与空气二次混合;长焰燃烧就是利用气体的扩散作用完成与空气的混合,最终实现燃烧。

3 热能动力锅炉燃料燃烧分析

浅谈电厂热能动力锅炉燃料

浅谈电厂热能动力锅炉燃料 发表时间:2019-04-01T15:04:58.737Z 来源:《电力设备》2018年第30期作者:焦建宇 [导读] 摘要:热能动力锅炉是电厂的重要设备,其关系到电厂的运行,但一般的锅炉会排放大量污染物,消耗过多的,能源,而且存在一些缺陷和问题。 (山西漳电大唐塔山发电有限公司山西大同 037003) 摘要:热能动力锅炉是电厂的重要设备,其关系到电厂的运行,但一般的锅炉会排放大量污染物,消耗过多的,能源,而且存在一些缺陷和问题。对热能动力锅炉进行合理使用,则能起到节约资源、保护环境的作用。这非常符合如今大力提倡的节能减排理念,同时也促进了可持续发展。为此,笔者针对电厂热能动力锅炉燃料进行了分析,希望能为广大的相关工作者提供一些参考依据。 关键词:电厂;热能动力锅炉;燃料;分析 如今,工业锅炉在国内得到了大量的使用,同时其也是电力行业运行过程中的重要基础,但其属于城市环境的主要污染源。通过对电力热能动力锅炉进行使用,能提高工作的效率和效果,减少污染。在展开相关工作时,需要针对工业锅炉的燃烧原理进行研究,这样才能解决其中存在的问题,并且发挥出更好的作用。 一、电厂热能动力锅炉的情况 (一)热能动力锅炉 热能动力锅炉在运行时,通过燃料的燃烧释放出热能。这些热能拥有相当大的规模,然后热能会传递给另外的物质,比如水。水进入了锅炉之后,锅炉会通过自身的受热面,促使吸收到的热量传递给水[1]。水的温度越来越高,甚至和压力达到同样的水平,这个时候便可引入水蒸气。在燃烧设备的影响下,热能动力锅炉的燃料能进行完全的燃烧,同时持续不断的释放热量,产生高温烟气。因为热传播的原因,这些高温烟气促使热量传递得以实现。然后烟气温度逐渐降低,通过烟囱排出去。 (二)燃料 燃料主要分为两种,一种是固体类燃料,一种是气体类燃料。在电厂生产的过程中,锅炉的燃料会充分燃烧,将产生的化学能热能传递给水。这样一来,温度会逐渐升高,并形成蒸汽,促使蒸汽和压力达到同样的水平。在该阶段,燃料的化学能转变为蒸汽的热能,同时在汽轮机中将热能变成机械能,机械能变成热能,不断循环。电站锅炉其实也属于一种换热器装置,其获得的能量来自于各个方面,其中包括了燃油、燃煤等。然而锅炉燃料和其他燃料不同,其主要将煤作为燃料,煤也属于固体类燃料。在热能动力锅炉中,通过燃料的燃烧来释放热量,从而达到热媒水加热的要求。一旦水达到一定的温度,压力就会上升到一定程度。在这个时候,电厂热能动力锅炉会处于良好的运行状态。不仅如此,还有燃油、燃气锅炉两种,第一种燃油锅炉的燃料非常多,其包括了柴油燃料、重油燃料等。分析燃气锅炉的情况,发现其燃料主要包括了液化石油气体、页岩气、天然气等。如今,国内大多数火力发电厂在发展的过程中,都会受到各种不同因素的影响。电厂热能动力锅炉的燃料,则大多数都是煤炭。煤炭中含有很多的氧、氢、碳、硫元素,其中最多是碳元素,大概占了48%左右。剩下的氧、碳、硫均能达到燃烧的要求,从而促进燃烧的进行[2]。 在电厂热能动力锅炉中,需要保持良好的通风状态,同时为燃料提供足够多的氧气。只有这样,才能促进燃料的充分燃烧。分析电厂热能动力锅炉的燃烧原理,发现其中所释放的碳元素能为燃烧提供条件。 二、燃料燃烧的特点 因为燃料的性质不一样,所以燃烧的过程也完全不同。如果燃料属于煤炭,那么着火温度比本来温度的更高,从而可进入稳定的燃烧状态。其中,气体燃料对燃烧方式有着非常高的要求。分析长焰燃烧,发现其必须依靠锅炉烧嘴的气体进行扩散,使得空气产生混合效应,从而更好的进行燃烧。但短焰燃烧则完全不同,其在燃烧初期会和空气进行混合,喷出后再继续燃烧。在这个过程中,一些气体会和二次气体结合。不仅如此,还有一种无焰燃烧。这种燃烧方式在燃料进入锅炉烧嘴之前便和空气进行混合,从而形成一定的反应。在这样的情况下,煤灰会形成燃料反应,所以完全看不到火焰。固体燃烧在锅炉中燃烧的方法有很多种,其中包括了蒸发燃烧、分解燃烧、完全燃烧等。而且这些燃烧方法拥有不同的特点,可根据自身的需求来进行选择和使用。 三、电力热能动力锅炉燃料的燃烧 分析热能动力锅炉的燃料,发现其中存在三种重要元素:碳、氢、硫。运行过程中煤灰没有得到一定的燃烧,不但会产生有害气体,而且还会损失不完全燃烧热,浪费资源。若是电厂热能动力锅炉燃料持续不断的燃烧,那么则能提高燃料的利用率,发挥出锅炉的作用[3]。为了促使燃料得到一定的燃烧,可以对以下这几个阶段进行控制: (一)预热阶段 第一个阶段是预热阶段,该阶段需对燃料进行一定的处理。等到完全发挥后,再完成预热工作,促使燃料更好的燃烧。在这个过程中,燃料会进行加热,温度逐渐升高。而且燃料中的水分也会逐渐蒸发,变得更加干燥。随着温度逐渐上升,燃料水分也会蒸发。但其中的热量并没有得到释放,甚至被吸收。在温度达到300℃的情况下,电厂热能动力锅炉中的固体燃料会得到更好的燃烧,甚至形成分解作用。燃料最佳预热温度不能少于300℃,不能高于400℃。所以在进行预热时,能促使电厂热能动力锅炉达到一定的温度。促使水分快速的蒸发,燃料也变成焦炭。 此外在预热过程中,锅炉炉膛里不需要添加氧气[4]。但需要注意燃料中的水分,如果其中的水分太多,那么便会提高排风量。最后还要保持稳定的温度,如果温度变化太大,那么便会影响预热的质量。所以在锅炉燃烧时,还要对预热进行调整。 (二)燃烧阶段 在燃烧阶段,加热会持续不断进行,温度也会升高。同时会产生挥发分的现象,形成热分解反应。温度升高到一定程度时,氧气分解的速度会越来越高。在最开始时,燃料表层逐渐覆盖了挥发分。避免了氧气和燃料的接触,所燃烧的是燃料分解出的物质。挥发分在消耗的过程中,燃料会和氧气产生接触,促进燃烧的进行。燃烧完毕之后,一些焦炭还处于燃烧的状态[5]。为了促使燃烧继续进行,要引入氧气。因为氧气和燃料之间进行接触,能够提高燃烧的程度,释放热量。要保证燃烧的整体质量,必须控制氧气的量、锅炉的温度。若是控制不合理,便会导致燃料的燃烧不充分,降低整个锅炉的工作效率。 (三)燃尽阶段 燃烧到一定程度后,体积会逐渐变小。而且燃料中没有参与燃烧的部分,也会进入燃烧反应,这是个持续不断的过程。在燃烧的过程

提高运行锅炉热效率的几点建议

提高运行锅炉热效率的几点建议 目前,运行中的锅炉一般以煤为燃料,由于对其管理、操作水平的限制,以及设备本身存在的问题,致其运行的热效率极大地低于《工业锅炉最低热效率标准》的规定,造成能源大量浪费。显然,提高运行锅炉的热效率,降低产汽成本,成为一个相当的现实问题。 锅炉热效率即有效利用燃料燃烧放出总热量的百分数。根据热平衡原理,热损失小了,有效利用热就多,效率便会提高。因此,如何提高锅炉热效率就成为研究如何降低热损失。 热损失主要包括:排烟热损失、固体未完全燃烧热损失、气体未完全燃烧热损失、锅炉散热损失、灰渣物理损失等。由于前两项热损失对效率影响很大,一般占总热量的 15~30%,有时可高达50%。因此,这里将重点讨论它们。 一、排烟热损失: 排烟热损失是锅炉的一项主要热损失。影响排烟热损失的主要因素是:排烟温度和过量空气系数。即:要降低排烟热损失就是降低排烟温度和保持一定的过量空气系数。 1.排烟温度: 排烟温度对锅炉热效率有直接的影响,因为排烟温度愈高,排烟热损失愈大,相应锅炉热效率就愈低。按照要求,这项热损失随着锅炉容量的不同一般在8%左右,但是很多锅炉达不到这个要求,有的高达15%左右,降低这项热损失成为锅炉节能的一个重要方面。锅炉在实际运行中,设备一定时,排烟温度的高低主要由烟气短路、受热面积灰与结垢以及运行负荷等因素而影响。 (1)烟气短路:煤在炉膛中燃烧,高温烟气离开炉膛后,应流经所有对流受热面进行热交换,但由于施工质量、检修不及时或用户私自进行不合理的结构改造等原因,使对流受热面的隔墙不严或损坏,造成烟气短路,只能和部分对流受热面进行热交换。显然,烟气流程变短,锅炉的排烟温度一定会相应提高。 (2)受热面积灰:据有关资料可知,烟灰的导热系数为0.07~0.12kW/m·℃,锅炉钢材的导热系数为35.6~50.6kW/m·℃,后者大约是前者的463倍,这样一来,假如锅炉在运行中,受热面积灰不及时清理,传热阻力将大大增加。通常,受热面积灰1mm厚,热损失将增加4~5%左右,同时多浪费燃料10%,所以,锅炉在运行当中应及时吹灰,以便降低排烟温度。实际中,不少用户将锅炉吹灰系统甩掉,显然,这是极大的错误。 (3)受热面结水垢:据资料可知,水垢的导热系数为1.28~3.14 kw/m·℃,比钢材的导热系数平均小19.5倍,显然,如果受热面结了水垢,其传热效果将会骤降,造成燃

对热能与动力工程专业的认识及规划

对热能与动力工程专业的认识通过上网查询和老师的介绍,认识到热能与动力工程 是研究热能的释放、转换、传递以及合理利用的学科,它广泛应用于能源、动力、空间技术、化工、冶金、建筑、环境保护等各个领域。 一热能与动力工程专业培养目标 热能与动力工程专业的培养目标;主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以 满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,流体工程、流体力学、流体机械、动力机械、水利工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。能从事汽车动力工程、制冷与低温技术、暖通空调,能源与环境工程、电厂热能动力、燃气工程、船舶、流体机械等方面的科研、教学、设计、开发、制造、安装、检修、运行管理和经营销售等方面工作的高级工程技术人才。 二热能与动力工程专业方向; 我校热能与动力工程专业设立了两个方向; 制冷与空调方向和热电方向。 主干学科:动力工程与工程热物理、机械工程、传热学、工程热力学。 主要课程;工程数学、画法几何与机械制图、工程力学、材料力学、机械原理、机械零件、电工与电子学、机械制造基础、机械原理、机械设计、工程热力学、流体力学、传热学、工程经济学,控制工程基础、微机原理与接口技术、单片机原理、测试技术、制造工艺学、优化设计等。 制冷方向专业科目:主要研究制冷与低温技术。主要有制冷与空调测量技术、制冷原理与装置、低温技术、空气调节、制冷压缩机、制冷系统CAD、计算机绘图、泵与风机、制冷空调电气自动控制、冰箱冷库、制冷热动力学、热泵制冷空调故障诊断等有关课程。专业方向培养从事制冷与空调技术和设备设计、科研、开发、制造和管理工作的高级工程技术人才。 本专业方向毕业生可在制冷、低温和空调技术及其相关应用领域的企业和科研院所、高等学校、设计院以及相关政府管理部门从事制冷与空调技术和设备的研究开发、设计制造、运行控制、管理、技术服务和营销等方面的工作。 热电方向专业科目;主要研究大气环境保护理论和技术,主要有电站锅炉原理核电技术、燃气轮机及其联合循环、热力发电厂、循环流化床锅炉、电厂汽轮机原理,发电厂自动化、电机学、发电厂电气设备、继电保护原理等有关课程。 毕业生主要从事热力设备的运行、维护、管理、科研开发以及热力系统的设计等工作,还可以在航天、机械、化工、船舶、核能等行业从事相关工作,也可以在军事部门、核电工业和辐射科学相关的科研设计单位、核电站、高等院校等从事规划、设计、运行、施工、管理、教育和研究开发工作。 三热能与动力工程专业前景: 伴随现实环境的发展,热能与动力工程的重要性正在日渐突出。 目前全世界常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。 能源动力及环境是目前世界各国所面临的头等重大的社会问题,我国能源工业面临着经济增长、环境保护和社会发展的重大压力。我国是世界上最大的煤炭生产和消费国,煤炭占商品煤炭、(%,已成为我国大气污染的主要来源。已经探明的常规能源剩余储量76能源消费的.

《燃料与燃烧》部分习题答案

《燃料与燃烧》习题解答 第一篇 燃料概论 1. 某种煤的工业分析为:M ar =3.84, A d =10.35, V daf =41.02, 试计算它的收到基、干燥基、干燥无灰基的工业分析组成。 解:干燥无灰基的计算:0 2.41=daf V 98.58100=-=daf daf V Fc ; 收到基的计算 ar ar ar ar V M A FC ---=100 36.35100 100=--? =ar ar daf ar A M V V A ar = 9.95 FC ar = 50.85 干燥基的计算: 35.10=d A V d = 36.77; 88.52100=--=d d d A V FC 2. 某种烟煤成分为: C daf =83.21 H daf =5.87 O daf =5.22 N daf =1.90 A d =8.68 M ar =4.0; 试计算各基准下的化学组成。 解:干燥无灰基:80.3100=----=daf daf daf daf daf N O H C S 收到基: 33.8100 100=-? =ar d ar M A A 95.72100 100=--?=ar ar daf ar M A C C H ar =5.15 O ar =4.58 N ar =1.67 S ar =3.33 M ar =4.0 干燥基: 68.8=d A 99.75100 100=-? =d daf d A C C 36.5913.0=?=daf d H H 77.4913.0=?=daf d O O N d = N daf ×0.913 =1.74 47.3913.0=?=daf d S S 干燥无灰基:C daf =83.21 H daf =5.87 O daf =5.22 N daf =1.90 S daf =3.80 3. 人工煤气收到基组成如下:

电厂热能动力锅炉燃料及燃烧探析

电厂热能动力锅炉燃料及燃烧探析 摘要随着科技和经济的持续进步,电厂发展已经逐渐变成目前我们国家十分重视的对象之一。热能动力工程涉及多方面内容,基本上与之相关的知识都需要进行利用。目前来看,我们国家的火力发电厂有着极佳的发展前景,为了能够让其满足我国社会的实际需求,必须对于燃烧的效率进行提升。本篇文章将一某工程案例作为基础进行阐述,探讨现阶段锅炉存在的问题和处理方法,分析热能动力锅炉燃烧的特点,并对于未来的发展方面提出一些合理的见解。 关键词电厂;热能动力锅炉;燃料及燃烧 前言 从现阶段发展而言,热能动力在整个社会中的应用率变得越来越广,其涉及的内容种类也越来越多。发电厂的锅炉基本上完全基于基础热能理论,对其展开全面关注,一方面可以使得技术能力得到提升,另一方面还能促进社会进步。 1 工程的基本概述 热能工程主要是将热能转化成电能,从而将其进行利用,以此降低能源的损耗。火力发电是我们国家十分传统的发电模式,其应用率非常广泛,尽管对于行业发展能够带来诸多益处,但随之带来的影响便是大量的能源浪费,不利于可持续性发展政策的有效贯彻。而热能动力工程便可以有效处理这一问题,以此将能力予以加热,促使其在经过一段时间受热之后转变成蒸汽,最终演变成电能。如此一来,电厂的发电效率便会进一步提升,燃煤损耗也会大幅度减少,因此对于电厂的发展有着非常大的意义。 2 当前锅炉存在的问题和处理措施 目前而言,我们国家的锅炉中还要许多缺陷存在。这其中,最为严重的便是风机问题,企业是锅炉内部的核心部件,其作用便是提升锅炉内部的气压,以此完成动力输送。 2.1 吹灰技术 在确保受热面具有足够安全性且没有任何结渣问题存在的前提下,将系统内部的受热等级进行降低,促使其表面烟体的温度持续上升。由于偏差发生了改变,因此如果出口位置气体的温度过高,则需要对其进行喷水处理。如此一来,超温的问题便能够得到一定程度的缓解,进而实现气温降低的目标。 2.2 燃烧技术 目前而言,燃烧技术仍然具有一定的发展空间,其最大的问题便是左右两边

锅炉热效率的计算与分析

薛正举 (河北金牛旭阳热电车间) 摘要:锅炉的热效率表明锅炉设备的完善程度和运行管理的水平。通过计算公司1#锅炉“煤改气”后的热效率,来分析了影响其热效率的主要因素,并讨论了提高锅炉热效率的方法。 关键词:燃气锅炉、热效率 锅炉的热效率是指燃料送入的热量中锅炉有效利用的热量所占的百分数。它是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理的水平。通过计算本公司1#锅炉的热效率,来分析了影响其热效率的主要因素,并讨论了提高锅炉热效率的方法,同时,也简单论述了其他减少热损失的措施。 一、燃气锅炉热效率的计算 在燃气锅炉相对燃煤锅炉,燃料燃烧程度要高很多,热损失相对比较少,燃气锅炉比燃煤锅炉的热效率要高。以下取公司1#燃气锅炉(煤改气锅炉)在2011年9月15日至17日的运行数据。通过正平衡法来计算1#锅炉的热效率。 正平衡法用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。正平衡热效率的计算公式可用下式表示:热效率 = 锅炉蒸发量X(蒸汽焓-给水焓) 燃料消耗量X燃料低位发热量 吨蒸汽耗气量 33 注明:煤气量是由生产部提供,蒸汽产量是锅炉统计。 煤气热值计算

注明:煤气成分明细是由质管部气象色谱仪分析得出,每天分析6次,取平均值。焦炉煤气热值计算公式如下: Qd(KJ/m3) = (Q 1×A 1 + Q 2 ×A 2 + Q 3 ×A 3 + Q 4 ×A 4 )/100 式中: Q 1、Q 2 、Q 3 、Q 4 ——各可燃成份的发热值,千焦/米3。 即,H 2 = 12797, CH 4 = 36533, CO = 12640, CmHn = 71180 A 1、A 2 、A 3 、A 4 ——各可燃成分在煤气中的百分数。 过热蒸汽热值计算 过热蒸汽热值从熵焓图上查出。 锅炉给水的热值 现在锅炉用除盐水水温平均44℃,是由锅炉自备蒸汽加热除氧。自备蒸汽未统计在锅炉产气量内。 水44℃时的热值是 kJ/kg 锅炉效率 锅炉效率={蒸汽热值(kJ/kg)-给水的热值(kJ/kg)}X1000 煤气热值(kJ/m3)X吨蒸汽耗气量(m3/t)

热能动力论文热能动力工程论文

热能动力论文热能动力工程论文 太阳能领域中的机械自动化研究 摘要:能源作为未来三大支柱产业之一,在保障国家安全及人民日常生活具有高度的战略意义,利用太阳能光热的太阳能热水器,越来越广的走进千家万户,竞争日趋激烈。想在未来激烈的产业竞争中取得优势,必须降低生产成本,降低成本的关键就是要提升生产流程的机械自动化程度,机械设备要具备数据采集系统,设备原料远程跟踪系统等。 关键词:热能性机械自动化智能化技术太阳能住宅 太阳能热水器是太阳能成果应用中的一大产业,它以环保、安全、节能、卫生等优点,迅速赢得了广大消费者的青睐,中国,是一个能源消耗大国,每年全国能耗约占全世界能耗总量的13,而全国总能耗中,有13是来自建筑能耗。“向屋顶要能源”,太阳能热水器就是吸收太阳的辐射热能,加热冷水提供给人们在生活、生产中使用的节能设备。太阳能热水器把太阳光能转化为热能,将水从低温度加热到高温度,以满足人们在生活、生产中的热水使用。 一.太阳能原理概述

太阳辐射透过玻璃盖板,被集热板吸收后沿肋片和管壁传递到吸热管内的水。吸热管内的水吸热后温度升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。随着热水的不断上移并储存在储水箱上部,同时通过下循环管不断补充温度较低的水,如此循环往复,最终整箱水都升高至一定的温度。控制系统把自来水通过控制阀,控制仪等送至太阳能以达到自动化控制。辅助电加热安置在水箱里,已备阴、雨、雪天使用,节电90%,并自动化运行。 影响平板式集热器板芯性能的主要因素,一是结构设计,二是表面吸收涂层。设计良好的集热器的板芯肋片效率应该在93%以上。集热器的板芯肋片效率与板芯结构、表面处理以及集热器整体结构有关。集热器整体结构的影响可以用总传热系数来描述,其影响程度与自身的几何尺寸(肋片厚度、材质)是一样。也就是说,在同等效率的情况下,集热器热损小时板芯可以薄一些。选择性吸收表面可以提高集热效率,但是市面上这类产品为了提高经济效益,往往肋片较薄。 保温材料的好坏直接关系着热效率和晚间清晨的使用,在寒冷的东北尤其重要。目前较好的保温方式是进口聚氨脂保温,若配料、工艺、环境、温度不适,也会造成发泡不均或泡孔过大、工质缓慢漏失保温性逐渐下降的后果,这就需要厂家有专门的发泡机械、标准化模具和较高的工艺技术水平。水循环管路管径及管路分布的合理性直接

浅述热能动力工程在锅炉方面的发展

浅述热能动力工程在锅炉方面的发展 发表时间:2017-10-18T18:07:19.400Z 来源:《电力设备》2017年第17期作者:赵俊平[导读] 摘要:随着经济的发展、人民生活水平的提高,我国面临的能源问题以及由此引发的环境问题越来越多。中国正处于经济快速发展阶段,在能源和环境的双重压力下,都要求火力发电机组提高能源利用率,降低供电煤耗,减少污染物排放。锅炉是火力发电机组的三大核心设备之一,它通过燃烧和传热将燃料的化学能转化为蒸汽的热能。因此,如何让电厂锅炉的燃烧效率达到市场经济的要求,对于电厂 来讲,运用热能动力技术推动电厂锅炉的技术进步就 (內蒙古第一电力建设工程有限责任公司內蒙古包头 014030) 摘要:随着经济的发展、人民生活水平的提高,我国面临的能源问题以及由此引发的环境问题越来越多。中国正处于经济快速发展阶段,在能源和环境的双重压力下,都要求火力发电机组提高能源利用率,降低供电煤耗,减少污染物排放。锅炉是火力发电机组的三大核心设备之一,它通过燃烧和传热将燃料的化学能转化为蒸汽的热能。因此,如何让电厂锅炉的燃烧效率达到市场经济的要求,对于电厂来讲,运用热能动力技术推动电厂锅炉的技术进步就显得尤为关键。 关键词:热能动力;工程;锅炉;发展 一、热能与动力工程 热能与动力工程涉及的范围十分广泛,应用起来十分广泛,结合当前经济发展,我们可以看出热能与动力工程的应用在解决实际能源录用方面具有十分重要的地位,它直接关系着我国电力企业的发展方向以及经济效益的实现情况。并且热能与动力工程充分利用了各个学科之间的相互关系,有效的支持了各种能量之间的转化,为社会经济的发展奠定了良好的基础。从热能与动力工程的专业角度来看,研究热能与动力工程的同时,还要注意对机械能力、物理能量的研究,把热能与机械能量之间的转化作为重中之重。并且随着科学技术的不断发展,热能与动力工程也逐渐朝着自动化化和智能化发展。 二、对锅炉结构及动力原理的分析 锅炉的燃气控制、锅炉的外壳及锅炉的生产配套部分共同构成了锅炉,而燃气锅炉外壳还包括底壳和面壳两方面,每个部分都发挥着不同的作用,其中底壳主要负责锅炉燃烧,也是锅炉燃烧的关键环节,因底壳上有电控盒和热交换器等部件,锅炉通过底壳与其他部分更好的进行连接,从而形成一个完整的结构。而面壳的作用主要是防止灰尘等杂物进入锅炉,更好的保护锅炉,进而使其使用寿命得到延长。除此之外,锅炉的核心部件电气控制也在锅炉的运行中发挥着关键作用,其主要任务是保障锅炉各项工作和锅炉燃烧的正常运转。近年来,随着科技水平的不断进步,使锅炉行业得到较快发展,目前锅炉业均已实现自动化控制,这样就能很好的控制锅炉的热平衡及锅炉的燃烧,从而使锅炉的燃烧效率得到提高,保证热能的利用率,从而有效地减少能源浪费。 三、我国电厂锅炉中存在的问题 在工业锅炉发展的过程中也加深了对热能与动力功能之间的转化研究,转化效率得到了极大的提高,但是当前仍然存在着一些问题需要解决,保证工业锅炉的正常使用。锅炉的构成部件十分复杂,其中风机是通过把电能转化为动能并向锅炉内部输送氧气的重要部件,风机的工作承受度是有限的,随着人们对能源需求量的逐年增加,企业为了追求更多的利益,开始盲目地增加锅炉的工作量,进而超过风机工作的承受度,导致风机出现损坏的现象,不仅对锅炉整体设备造成不良影响,同时也中断了企业的生产。由于风机内部构造十分繁杂,工作人员很难准确判定风机内部的温度,所以应该加强对锅炉中风机内部温度测量的研究,目前最为常用的方法就是通过对不同方向上流入风机叶片的燃烧速度进行测量,根据测量的数据进行建模并划分出网络结构,直观地观察风机和其他部件之间的联系,并逐渐完善风机的设计,提高风机的工作能力和效率,进而提高整个锅炉的运转能力。 四、热能与动力工程在锅炉中的应用 4.1锅炉燃烧控制技术的创新 如何有效地调节能量转换是锅炉燃烧控制中的重要部分。早期工业生产中,我国的锅炉填充燃料绝大多数是采取人工添加的方式,从而保障锅炉相关工作的正常稳定运转。不过,随着科学技术的发展,绝大部分企业已从人工填料方式向步进式的自动化转变,而连续控制系统是主要的锅炉燃烧方式,其主要由各种气体的分析装置及燃烧的控制器等部分构成,通过热电偶的有效检测来设定合理数值,再利用计算机准确计算出所测数值偏差,从而保证输出结果的准确性,与此同时,还能够有效且合理的对锅炉燃烧进行控制。 4.2在锅炉风机监控中的应用 要想实现锅炉的良好运转,必不可少的装置便是风机的安装,风机将外界含有氧气的气体传送到锅炉内,实现燃料的有效燃烧。然而现阶段对能源的需求逐渐增加,风机运行的压力越来越大。因为风机的运行过程中会产生很大的热量,锅炉整体与风机的距离较近,风机得不到降温,就会产生工作负荷,导致风机被烧坏,这种情况不仅没有实现增加能源供应的目的,还严重影响了锅炉的正常运转。然而锅炉风机装备结构较复杂,采用常规的测量方式很难测到风机的温度,它需要采用高科技对温度进行智能监控。目前我们还没有找到解决这种问题的技术对策。现阶段,采取的是应用热能与动力工程研发出相应的软件,从而对风机的温度进行有效计算。 结语 综上所述,热能动力工程是工业发展过程中需要重点研究的一个方面,这种热能动力工程的发展的价值和意义是比较明显的,能够为工业的发展提供源源不断的发展动力,具体到锅炉的使用中来看,这种热能动力工程也能够发挥出较强的应用价值和效果,对于改善和提升锅炉应用效果具备着较为突出的积极作用,值得在今后的锅炉应用中进行深入的研究和探讨,尤其是对于炉内燃烧控制技术以及软件仿真锅炉风机翼型叶片的使用来说,其积极价值更为明显,这些优势的体现也就促使人们不断的加强对于热能动力工程及其相关应用的研究,进而最大程度上提升其应用的效果。 参考文献: [1]吴江,郑莆燕,任建兴,等.关于热能与动力工程专业卓越工程师培养的探索与实践[J].中国电力教育,2011. [2]魏齐欣,程光宇,刘艳珍,曹华.热能与动力工程在电厂中的合理运用分析[J].黑龙江科技信息,2015. [3]张晓杭.新形势下电厂锅炉应用在热能动力工程中的应用[J].中国高新技术企业,2015.

锅炉热效率的提高

锅炉是利用燃料嫩烧所放出的热量加热工质生产具有一定压力和温度的蒸汽的设备,也称为蒸汽锅炉。从能量平衡的观点来看,当锅炉工况稳定时,翰人锅炉的热量与锅炉输出的热量应当平衡。由于送人炉内的燃料不会全部燃烧放热,而燃料燃烧放出的热量也不会全部用以产生蒸汽,因此锅炉输出的热t包括有效利用热和各项热损失两个方面,有效利用热是锅炉用以产生蒸汽及加热蒸汽的热量,各项热损失是在燃烧和传热过程中以各种方式损失掉的热量。对于燃煤锅炉而言,热平衡方程为:q,+g2+g3+q4+g5+q6--100%式中,q;为锅炉有效利用热百分数,%;q:为排烟热损失百分数,%;,,为化学不完全燃烧热损失百分数,%;q4为机械不完全嫩烧热损失百分数,%;q,为锅炉散热损失百分数,%;q。为炉渣物理热损失百分数,%。根据山西省煤炭工业节能监测中心对晋煤集团成庄电厂锅炉热平衡试验的报告,锅炉运行状况较差,热效率偏低,Is炉热效率为64.92%,2'炉为48.07%,3#炉为54.71%,远低于设计值77%,因此我们需要对锅炉各项热损失偏大的原因及应采取的措施进行探讨。1提高锅炉热效率的方法1.1降低排烟热损失排烟热损失即烟气离开锅炉排人大气所带走的热量损失。一般锅炉的排烟热损失为4%-8%,经测定,成庄电厂锅炉排烟热损失,1'炉为9A3%,2*炉为7.22%,3#炉为9.3%,排烟热损失偏大。影响排烟热损失的主要因素是排烟温度和排烟容积。降低锅炉排烟温度,可降低排烟热损失,但是排烟温度过低也是不允许的。要降低排烟温度,势必要增加锅炉受热面,由于成庄电厂锅炉现已定型,故不能增加受热面。另外,为防止锅炉尾部受热面低温腐蚀,排烟温度应保持高些,合理值为1109C-1609C,成庄电厂锅炉排烟温度通常为150℃左右,故排烟温度方面可不予以考虑。降低炉内空气过剩系数可以减小排烟容积,从而减小排烟热损失。空气过剩系数通常应保持在1.5以下,经测定成庄电厂锅炉空气过剩系数偏大,Ir炉为2.78,2'炉为3.09,3'炉为2.73。引起空气过剩系数偏大的原因,一是在锅炉运行中炉膛及烟风道各处存在不同程度漏风现象,二是送引风配风不合理。这既导致排烟热损失的增大,又引起炉膛温度降低,增大了其他热损失,因此要根据锅炉负荷情况,及时合理地调整送引风机风门开度,并利用检修期间检查处理炉膛及烟风道存在的漏风点,使空气过剩系数趋近于1.40当受热面积灰、结渣和结垢时会使传热减弱,排烟温度升高,造成排烟热损失增大。因此应及时吹灰除焦和防止结垢,保持受热面内外清沽,以降低排烟热损失。1.2降低化学不完全燃烧热损失化学不完全嫩烧热损失又称可燃气体不完全燃烧热损失,是指燃烧过程中产生的可然气体(CO,H2iCH4等)未能完全燃烧而随烟气排出炉外所造成的热损失。经测定成庄电厂锅炉化学不完全燃烧热损失,1'炉为6.01%,2#炉为5.18%,3*炉为5.43%0272空气过剩系数对化学不完全燃烧热损失影响很大,空气过剩系数过小,将使嫩烧因氧量不足而增大化学不完全燃烧热损失,过大则会降低炉膛温度,也会使化学不完全燃烧热损失增大。因此在锅炉运行中,要保持空气过剩系数为1.4左右,有较高的炉膛温度,使燃料与空气充分混合,延长烟气停留时间,促进烟气中可燃物燃尽。1.3降低机械不完全姗烧热损失机械不完全燃烧热损失又称可燃固体(固定碳)不完全燃烧热损失。它是部分固体可燃物在炉内不完全燃烧随飞灰和炉渣一同排出炉外而造成的热损失,由飞灰不完全燃烧热损失和炉渣不完全燃烧热损失两部分组成。经测定成庄电厂锅炉机械不完全嫩烧热损失,1'炉为17.72%,2#炉为36.42%,3#炉为27.91%0成庄电厂锅炉设计使用燃煤粒度为6二一13二,最大颗粒小于40Ifldl,而实际使用燃煤为末煤,在燃烧中飞灰不完全燃烧现象严重,增大了机械不完全燃烧热损失,因此应解决燃煤颗粒度问题。燃料的灰分越少,挥发分越多,则机械不完全燃烧热损失就越小,因此应尽量燃用灰分少的煤,保证煤的灰分含量不大于14%0炉渣含碳量偏大,使炉渣不完全燃烧热损失大幅度增大,应根据锅炉负荷情况合理调整炉排

《燃料与燃烧》习题解

《燃料与燃烧》习题解 (仅供参考) 第一篇 燃料概论 1. 某种煤的工业分析为:M ar =3.84, A d =10.35, V daf =41.02, 试计算它的收到基、干燥基、干燥无灰基的工业分析组成。 解:干燥无灰基的计算:0 2.41=daf V 98.58100=-=daf daf V Fc ; 收到基的计算 ar ar ar ar V M A FC ---=100 36.35100 100=--? =ar ar daf ar A M V V A ar = 9.95 FC ar = 50.85 干燥基的计算: 35.10=d A V d = 36.77; 88.52100=--=d d d A V FC 2. 某种烟煤成分为: C daf =83.21 H daf =5.87 O daf =5.22 N daf =1.90 A d =8.68 M ar =4.0; 试计算各基准下的化学组成。 解:干燥无灰基:80.3100=----=daf daf daf daf daf N O H C S 收到基: 33.8100 100=-? =ar d ar M A A 95.72100 100=--? =ar ar daf ar M A C C H ar =5.15 O ar =4.58 N ar =1.67 S ar =3.33 M ar =4.0 干燥基: 68.8=d A 99.75100 100=-? =d daf d A C C 36.5913.0=?=daf d H H 77.4913.0=?=daf d O O

N d = N daf ×0.913 =1.74 47.3913.0=?=daf d S S 干燥无灰基:C daf =83.21 H daf =5.87 O daf =5.22 N daf =1.90 S daf =3.80 3. 人工煤气收到基组成如下: 解:干煤气中: H 2,d = 48.0×[100/(100-2.4)]=49.18 CO ,d = 19.3×1.025=19.77 CH 4,d = 13.31 O 2,d = 0.82 N 2,d = 12.30 CO 2,d = 4.61 ρ=M 干/22.4=(2×49.18%+28×19.77%+16×13.31%+32×0.82%+28× 12.30%+44×4.61%)/22.4 = 0.643 kg/m 3 Q 高 =4.187×(3020×0.1977+3050×0.4918+9500×0.1331) =14.07×103 kJ/m 3= 14.07 MJ/ m 3 Q 低 =4.187×(3020×0.1977+2570×0.4918+8530×0.1331) =12.55×103 kJ/m 3= 12.55 MJ/ m 3 第二篇 燃烧反应计算 第四章 空气需要量和燃烧产物生成量 5. 已知某烟煤成分为(%):C daf —83.21,H daf —5.87, O daf —5.22, N daf —1.90, S daf —3.8, A d —8.68, W ar —4.0, 试求: (1) 理论空气需要量L 0(m 3/kg ); (2) 理论燃烧产物生成量V 0(m 3 /kg ); (3) 如某加热炉用该煤加热,热负荷为17×103kW ,要求空气消耗系数 n=1.35,求每小时供风量,烟气生成量及烟气成分。 解:(1)将该煤的各成分换算成应用成分: % 33.8100 4 100%68.8100100%=-?=-? =ar d ar W A A %95.72100 4 33.8100%21.83100100%=--?=--? =ar ar daf ar W A C C %15.5%8767.087.58767.0%=?=?=daf ar H H

2021年锅炉及能源领域的热能动力工程发展现状探讨

锅炉及能源领域的热能动力工程发展现状探讨 能源动力的发展,是影响国家经济发展的重点,下面是搜集的一篇探究热能动力工程发展现状的,供大家阅读参考。 伴随着我国科技现代化的不断推进,其相应的产业正在不断的扩展,这对基本的经济生产能力,以及社会的现代化建设,都有很大的促进作用。但是生产过程中需要大量的能量来进行供给,而现代能源领域的发展,还主要通过热能来进行驱动,如果驱动存在问题,那么就可能影响到现代化建设的进程。而从我国近年来的社会发展,可持续发展战略的提出,就对这一形式的建设提出了需求上的调整。本文针对锅炉以及能源领域的热能动力工程开发进行简要的讨论。 就现阶段的世界能源使用情况来看,积极的开发新能源,已经成为了一项重要的责任指标,我们从能源的利用率出发,对其工程的能源资源利用率来说,其高低就决定了工程的合理性。专业领域在研究的过程中,会影响到自身能源资金的有效性,因工程领域内的环境来说,其所发挥出的基本能力以及供给发挥作用,都能够对其运行效率有所提升。下面我们对锅炉与能源领域额热能动力工程进行简要分析。

能源动力工程是对现代热能工程以及热力发动机的研究,其主要包括了对基本工程技术与热物冷藏等多个工程方面的合理化设计,这一点与热能的动力转化形式来说,可根据其技术的热能工程以及热力发动机的多个方面,其作用在于对热能和动力发动机的综合设计。在我国的煤炭资源丰富建设上,可结合企业的节制性质来看,可结合世界范围内的场景分析,并完善其在废气的处理,根据土壤环境的诸多危害,改善对脱硫技术等多方面的改进,对于基本的威胁作用,都会严重影响到资源的使用率,在应用的过程中,我们从环境的污染情况进行综合发展研究,其利用率是影响其转化率的重点。 就我国近年来的社会发展程度来说,对于工业锅炉的电站锅炉发展情况,其作用对于锅炉的使用来说,作用也可以确保其基本的设施需求,在连接上,根据整体的能应用渠道进行整体检测控制,这从基本的燃气阀冰箱调控等,都会产生主体形式上的调控失调,从配件的通过率上,可满足其整体的设计。其作用技术形式,对热力的发动机以及工程物理作用等,都会形成一套有效的促进作用,这在我国的人口基数以及促进的煤炭效应等方面,根据其科技水平的发展,也逐渐的影响到了对科技水平的实践作用。对于存储量的资源设施受益建设,其科技的进步是确保电脑控制方法得体的根本所在。

热能动力在锅炉与能源上发展探析

热能动力在锅炉与能源上发展探析 发表时间:2018-01-10T14:01:17.290Z 来源:《防护工程》2017年第23期作者:赵国宏[导读] 近年来,人们的环保意识逐渐增强,火电工程作为一种新型的节能环保项目,在不同的行业在中国被广泛使用。 鄂尔多斯市通惠供热燃气集团有限公司蒙古自治区鄂尔多斯市 017000 摘要:近年来,人们的环保意识逐渐增强,火电工程作为一种新型的节能环保项目,在不同的行业在中国被广泛使用,这是中国可持续发展的战略思想不仅一致,而且保护环境,能源的有效利用做出了重要贡献。但火电工程是一个开发项目,如何有效地加强新能源的使用,在锅炉及新能源的热能与动力工程合理的利用,为了更好的促进经济的发展,有效地减少污染物的排放仍然是迫切需要解决的问题。锅炉在燃烧过程中会排放大量的污染气体,严重影响了空气质量和人们的生活环境,而火电工程经过多年的发展,在锅炉和能源中的应用都体现了一定的效果。关键词:热能动力;锅炉;能源发展 1热能与动力工程概述热能与动力工程主要是针对热能与动力学中多种能力的转换方法,就目前的情况来看,火力发电厂能源主要是使用媒、石油、天然气等矿物燃料充当,并且使用燃烧的方法将其中的能量进行释放,从而使得水从液体状态转化成气体状态,成为一个循环的过程。蒸汽的热能推动汽轮机的过程中主要是其中的热能进行转化,得到机械能,然后是汽轮机发电机把机械能转化为电能,这样一整个过程就完成了能量的转化。锅炉在能量的转换过程中主要是进行矿物质燃料的转换,将化学能转化成热能,在这个转化的过程中需要高度重视锅炉效率这一指标。锅炉燃烧优势技术主要是进行燃烧系统控制,从而能够进一步提高效率,同时也能够进一步控制污染物的排放。如果是大型的火力发电机其在运行的过程中提高百分之一的锅炉效率能够提高整体的运行效率百分之零点三到零点四,同时也能够有效的控制燃料的消耗。因此在实际应用中使用热能动力工程技术进行电厂锅炉的改造非常重要,能够达到节能控制的目的,提高整体经济效益,需要引起我们的重视。 2热能与动力工程在锅炉中的具体应用 2.1炉内燃烧控制技术 就目前的情况来看,锅炉的能量转化效率和炉内燃烧效率有非常紧密的联系,通过炉内燃烧控制能够进一步提高燃烧效率,同时促进能量的转换,提高燃烧的效率,这种控制方法也是得到了进一步改进,从过去的手动方式逐渐的转向了自动化控制方法,从而有效的控制了成本。就目前的情况来看,其主要有两种方法,即空燃比例连续控制系统和双交叉限幅控制系统,每一种都有各自的特点,主要是:1)空燃比例连续控制系统,目前对于这种系统已经广泛的应用于锅炉中,同时能够整体的进行燃气和空气比例的调整,能够更好的控制燃烧过程,确保稳定。从实践中也可以知道,燃烧效率和控制会受到控制系统的影响,因此为了达到其目的,需要科学的进行燃烧控制,有效的控制温度。该系统主要的工作原理是有效的分析锅炉内气体热电偶和气体装置,能够对其中燃气和空气的比例明确,然后进行整体的对比,找出其中的差异,然后合理的估计温度,将炉内的温度控制在允许的标准范围内。(2)双交叉限幅控制系统。在实际的应用时需要合理的调控参数分析、调节、对比,同时也需要进行温度测量,结合实际情况做好调整工作。该系统的工作原理是根据实际情况进行炉内燃气与空气比例分析,然后进行合理的调控,将其控制在运行的范围内。在整个过程中通过有效的控制空气过剩率的上限,从而能够防止负荷问题,确保其处于最佳的燃烧区域,能够达到节能的目的。 2.2模拟锅炉风机翼型叶片的应用 就目前的情况来看,锅炉叶轮设备购置相对复杂,如果运行中出现问题,同时不容易解决,因此通常情况下不会进行精细检测试验。如今锅炉系统还没有相对比较完善的实验是数据,从而会在很大程度上影响锅炉的正常运行,对此企业需要采取有效的方法进行控制,主要是模仿风机翼型叶片方法,同时建立起二维模型,从而能够对整个标准以及范畴进行确定,输出网格,采用合理的方法进行计算,从而得到结果,这也就完成了整个模仿过程。 2.3调整燃烧技术 如今电厂锅炉再热器普遍存在一个问题是中间吸热太少,而左右吸热又太多,因此在实际应用中需要合理的进行燃烧计算的调整,从而达到少受热面吸热偏差目的,确保温度处于均匀状态。锅炉检修的过程中需要检查和调平以下方面的内容,即安置位置、二次风门挡板、上下摆角、SOFA水平摆动执行机构等,从而确保汽温处于均匀状态。调整燃烧技术具有非常重要的作用,能够确保燃料的完全燃烧,同时也能够确保电厂锅炉内的再热器在应用的过程中有效的吸收其中的热量,保证稳定偏差处于均匀的状态。 2.4热能动力工程在中国能源领域的应用 火电工程在中国能源中的应用是非常重要的,这是由于中国国土面积辽阔,但资源匮乏,人均资源占有量低于世界平均水平,和国内经济的发展需要大量的能源,在未来,和一个较长时间的未来,中国将始终存在,并且越来越严重。这种情况的出现,将严重影响中国的经济发展,因此,加强火电工程在能源开发中的应用有着重要的影响。火电工程在能源的应用能有效地提高资源利用效率,避免资源的浪费,从而达到节约资源,也是缓解能源短缺的问题在中国。还应该加强对火电工程和其他新能源的结合,如火力发电工程中的风机的使用,重点应放在通风和空气两,政府应加强研究和发展的投资,提升发电设备和工业炉设备和强。注意在火电工程电站和工业锅炉的改革与创新,促进工业生产中传统的能源供应模式的改变,随着中国对新能源的需求上升,寻找出路,为中国的能源短缺问题,为中国能源经济发展的保护。 3热能动力工程在未来的发展趋势和方向 3.1热力发动机和汽车工程方面 结合工程和汽车工程是最有利的热力学动能的未来发展方向、热能工程、汽车工程因为有着密切的联系,汽车也依赖于燃烧的动能,汽车的控制工程,需要掌握热机的工作原理和相关的理论知识。热机的理论知识和技术可以为汽车工业的变化创造条件,促进汽车工业的不断变化。

锅炉效率计算

单位时间内锅炉有效利用热量占锅炉输入热量的百分比,或相应于每千克燃料(固体和液体燃料),或每标准立方米(气体燃料)所对应的输入热量中有效利用热量所占百分比为锅炉热效率,是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理水平。锅炉的热效率的测定和计算通常有以下两种方法: 1.正平衡法 用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。正平衡热效率的计算公式可用下式表示: 热效率=有效利用热量/燃料所能放出的全部热量*100% =锅炉蒸发量*(蒸汽焓-给水焓)/燃料消耗量*燃料低位发热量*100% 式中锅炉蒸发量——实际测定,kg/h; 蒸汽焓——由表焓熵图查得,kJ/kg; 给水焓——由焓熵图查得,kJ/kg; 燃料消耗量——实际测出,kg/h; 燃料低位发热量——实际测出,kJ/kg。 上述热效率公式没有考虑蒸汽湿度、排污量及耗汽量的影响,适用于小型蒸汽锅炉热效率的粗略计算。 从上述热效率计算公式可以看出,正平衡试验只能求出锅炉的热效率,而不能得出各项热损失。因此,通过正平衡试验只能了解锅炉的蒸发量大小和热效率的高低,不能找出原因,无法提出改进的措施。 2.反平衡法 通过测定和计算锅炉各项热量损失,以求得热效率的方法叫反平衡法,又叫间接测量法。此法有利于对锅炉进行全面的分析,找出影响热效率的各种因素,提出提高热效率的途径。反平衡热效率可用下列公式计算。 热效率=100%-各项热损失的百分比之和 =100%-q2-q3-q4-q5-q6 式中q2——排烟热损失,%; q3——气体未完全燃烧热损失,%; q4——固体未完全燃烧热损失,%; q5——散热损失,%; q6——灰渣物理热损失,%。 大多时候采用反平衡计算,找出影响热效率的主因,予以解决。

相关主题
文本预览
相关文档 最新文档