当前位置:文档之家› 勾股定理拔高讲义

勾股定理拔高讲义

勾股定理拔高讲义
勾股定理拔高讲义

勾股定理 拔高训练

1.如图,P 是等边三角形ABC ?内的一点,连结PA 、PB 、PC ,以BP 为边作ο

60=∠PBQ ,且BQ=BP ,连结CQ 、PQ ,若PA:PB:PC=3:4:5,试判断PQC ?的形状。

2.如图,ADC ?和BCE ?都是等边三角形,ο

30=∠ABC ,试说明:2

2

2

BC AB BD +=

3.在等腰直角三角形中,AB=AC ,点D 是斜边BC 的中点,点E 、F 分别为AB 、AC 边上的点,且DE ⊥DF 。 (1)说明:2

2

2

EF CF BE =+

(2)若BE=12,CF=5,试求DEF ?的面积。

4.为了美化环境,计划在某小区用草地铺设一个等腰三角形,使它的面积为30平方米且有一边长为10米,求另外两条边。

勾股定理提高训练(一)

1、在Rt △ABC 中,若直角边的长分别为1cm ,2cm ,则斜边长为_____________.

2、已知直角三角形的两边长为

3、2,则另一条边长是________________.

3.在一个直角三角形中,若斜边长为5cm ,直角边的长为3cm ,则另一条直角边的长为( ). A .4cm B .4cm 或cm 34 C .cm 34 D .不存在 4、在直角三角形ABC 中,斜边AB=1,则AB 2

2

2

AC BC ++的值是( ) A.2 B.4 C.6 D.8

5、直角三角形两直角边长分别为5和12,则它斜边上的高为_______.

6、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.

C

D

B

第7题

F

E

D

C

B

A

第9题

B

A

6cm

3cm 1cm

第10题图

C

B

A

7

15

24

25

207

1520

24

25

15

7

2520

24

257

202415

(A)(B)

(C)

(D)

7、如图,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是__. 8、把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2

,那么还要准备一根长为____的铁丝才能把三角形做好.

9.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点及 A 点重合,则EB 的长是( ). A .3

B .4 C

D .5

10、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .

①如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要__cm ; ②如果从点A 开始经过4个侧面缠绕3圈到达点B ,那么所用细线最短需要______cm .

勾股定理提高训练(二)

1、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°

2、下列各组数据中,不能作为直角三角形三边长的是( ) A.9,12,15 B.

4

3

,1,45 C.0.2,0.3,0.4 D.40,41,9 3、满足下列条件的三角形中,不是直角三角形的是( ) A.三个内角比为1∶2∶1 B.三边之比为1∶2∶5 C.三边之比为3∶2∶5 D. 三个内角比为1∶2∶3

4、已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为( ) A.2 B.102 C.10224或 D.以上都不对

5、 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )

A B C D

6、△ABC 的三边分别是

7、24、25,则三角形的最大内角的度数是 7、已知△ABC 的三边长满足18,10==+ab b a ,8=c ,则为 三角形.

8、将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ). A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形

9、在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为AD= cm . 10、下列命题中是假命题的是( ).

A .△ABC 中,若∠B=∠C-∠A,则△ABC 是直角三角形.

B .△AB

C 中,若a 2

=(b+c)(b -c),则△ABC 是直角三角形. C .△ABC 中,若∠A∶∠B∶∠C=3∶4∶5则△ABC 是直角三角形. D .△ABC 中,若a∶b∶c=5∶4∶3则△ABC 是直角三角形.

11.如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.

12、如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB.

13、如图,在梯形ABCD 中,AD∥BC,AB⊥AC,∠B=45°, AD =1,B C =4,求DC 的长.

15、如图,某学校(A 点)及公路(直线L )的距离为300米,又及公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之及该校 A 及车站D 的距离相等,求商店及车站之间的距离.

第11题图

B

A C

D .

第12题图

B C

A D

A

D

E

B

C

16.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA⊥AB 于A ,CB⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?

17、如图所示,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长.

中考试题精选

(2012广州市)在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( ) A.

365 B. 1225 C. 94 D. 33

4

(2012巴中市)已知a 、b 、c 是△ABC 的三边长,且满足关系c 2

-a 2

-b 2

+|a-b|=0,则△ABC 的形状为______ (2013巴中)若直角三角形的两直角边长为a 、b ,且满足,则该直角三角形的

斜边长为 .

(2013黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( ) A 、5 B 、7 C 、5 D 、5或7

(2013柳州)在△ABC 中,∠BAC=90°,AB=3,AC=4.AD 平分∠BAC 交BC 于D ,则BD 的长为( ) A .

B .

C .

D .

(2012南充市) 如图,四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若四边形ABCD 的面积是24cm 2

,则

第17题图

AC长是_____________cm.

(2013?湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.

(2013?达州)如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10。设AE=x,则x 的取值范围是.

(2013?资阳)如图1,点E在正方形ABC D内,满足90

∠=?,AE=6,BE=8,则阴影部分的面积是()

AEB

A.48B.60C.76D.80

(2013鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.

图1

(2013?鄂州)如图,已知直线a∥b,且a及b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A. 6 B. 8 C. 10 D. 12

(2013山东滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为______.

(2013?鄂州)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF 表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:

(1)楼高多少米?

(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)

(2013?襄阳)在一张直角三角形纸片中,分别沿两直角边上一点及斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.

考点:图形的剪拼;勾股定理.

分析:先根据题意画出图形,此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.

解答:

①如图所示:连接CD,CD==,∵D为AB中点,∴AB=2CD=2;

②如图所示:连接EF,EF==3,

∵E为AB中点,∴AB=2EF=6,故答案为:6或2.

点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.

(2013?莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.

分析:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.

解答:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.

点评:本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.

(2013?东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁

..离容器底部0.3m的点B

处有一蚊子,此时一只壁虎正好在容器外壁

..的点A处,则壁虎捕捉蚊子

..,离容器上沿0.3m及蚊子相对

的最短距离为1.3 m(容器厚度忽略不计).

(2014?湘潭)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),及L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)

考点:勾股定理的应用.

分析:首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.

解答:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,

在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400≈566(米),

答:直线L上距离D点566米的C处开挖.

点评:此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理及方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.

(2014?湖南张家界)如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC

于D、E两点.若BD=2,则AC的长是()A.4 B.4C.8 D.8

考点:线段垂直平分线的性质;含30度角的直角三角形;勾股定理.

分析:求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.

解答:如图,∵在Rt△ABC中,∠ACB=60°,∴∠A=30°.

∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,

∵BD=2,∴CD=AD=4,∴AB=2+4+2=6,

在△BCD中,由勾股定理得:CB=2,

在△ABC中,由勾股定理得:AC==4,故选:B.

点评:本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.

(2014?十堰)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()

A.2B.C.2D.

考点:勾股定理;等腰三角形的判定及性质;直角三角形斜边上的中线.

分析:根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.

解答:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB

∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,

∵∠ACD=2∠ACB,∴∠ACD=∠CGD,∴CD=DG=3,

在Rt△CED中,DE==2.故选:C.

点评:综合考查了勾股定理,等腰三角形的判定及性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.

(2014?山东枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为

(3+3)cm.

考点:平面展开-最短路径问题;截一个几何体

分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,

在Rt△BCD中,CD==6cm,∴BE=CD=3cm,

在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).

点评:考查了平面展开-----最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.

(2014?山东潍坊)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是__________尺.

考点:平面展开-最短路径问题;勾股定理的应用.

分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.

解答:如图,一条直角边(即木棍的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长2

22015 =25(尺).故答案为:25

点评:本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.

(2014?四川凉山州)已知一个直角三角形的两边的长分别是3和4,则第三边长为 5或 .

考点:勾股定理.专题:分类讨论.

分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长. 解答:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=

; ②长为3、4的边都是直角边时:第三边的长为:

=5;故第三边的长为:5或

. 点评:此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.

(2014?四川凉山州)如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 及蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为 20 cm .

考点:平面展开-最短路径问题

分析:将杯子侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求. 解答:如图:将杯子侧面展开,作A 关于EF 的对称点A′, 连接A′B ,则A′B 即为最短距离,A′B=

=

=20(cm ).故答案为:20.

点评:本题考查了平面展开﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.

11.(2014?甘肃白银)等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是cm.

考点:勾股定理;等腰三角形的性质.

分析:利用等腰三角形的“三线合一”的性质得到BD=BC=6cm,然后在直角△ABD中,利用勾股定理求得高线AD的长度.

解答:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,

∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案是:8.

点评:本题主要考查了等腰三角形的三线合一定理和勾股定理.等腰三角形底边上的高线把等腰三角形分成两个全等的直角三角形.

(2014年广西钦州)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()

A.1种B.2种C.3种D.4种

考点:勾股定理的应用.专题:计算题.

分析:如图所示,找出从A点到B点的最短距离的走法即可.

解答:根据题意得出最短路程如图所示,最短路程长为+1=2+1,则从A点到B点的最短距离的走法共有3种,故选C

点评:此题考查了勾股定理的应用,弄清题意是解本题的关键.

(2014?乐山)如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则CD的长为()A.B.C.D.

考点:勾股定理;三角形的面积..

分析:利用勾股定理求得相关线段的长度,然后由面积法求得BD的长度;最后在直角△BCD中,利用

勾股定理来求CD的长度.

解答:如图,由勾股定理得AC==.∵BC×2=AC?BD,即×2×2=×BD∴BD=.

在直角△BCD中,由勾股定理知,CD==.故选:C.

点评:考查了勾股定理,三角形的面积.利用面积法求得线段BD的长度是解题的关键.

(2014?无锡)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8.

考点:勾股定理;直角三角形斜边上的中线

分析:由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.

解答:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.

在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得

CD===8.故答案是:8.

点评:本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.

(2014?黑龙江牡丹江)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于12cm.

考点:勾股定理;三角形的面积;等腰三角形的性质

分析:根据三角形的面积求得=,根据勾股定理求得AB2=BC2+36,依据这两个式子求出AB、BC 的值,即可求得周长.

解答:∵AD是BC边上的高,CE是AB边上的高,∴AB?CE=BC?AD,

∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,

∵AB2﹣BD2=AD2,∴AB2=BC2+36,∴=,整理得;BC2=,

八年级数学《勾股定理》讲义全

【课题名称】八上数学《勾股定理》 【考纲解读】 1.掌握勾股定理的含义; 2.理解勾股数,并且会熟练地运用勾股数; 3.能够根据勾股定理,解决实际问题。 【考点梳理】 考点1:勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)勾股定理的表示:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 考点2:勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 考点3:勾股数 (1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。 (2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。 考点4:勾股定理的应用 (1)已知直角三角形的任意两边长,求第三边。在A B C ?中,90C ∠=?,则c , b ,a ; (2)已知直角三角形一边,可得另外两边之间的数量关系; (3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。 【例题讲解】 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理复习讲义

勾股定理复习讲义 【中考命题趋势】 本章内容在中考中多以填空题与选择题的形式出现,应结合直角三角形的有关性质、三角函数知识进行线段的计算或证明,近几年来,以实际问题为背景的探究题、材料分割题、实际应用题、网格试题不断涌出,题目多以中档题为主,这也是今后中考试题发展的重要趋势。 【知识点归纳】 123456?? ?? ?? ??? ???? ?? ??? ? ?? ?? ??? ?????????? ?? ?? ?? ????? ?? ?? ?? ??? 1、已知直角三角形的两边,求第三边勾股定理 2、求直角三角形周长、面积等问题 3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状 3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题 勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理相关概念性质 (1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。 ②有一个角是45°的直角三角形是等腰直角三角形。 ③直角三角形斜边的中线等于斜边的一半。 (3)勾股定理的验证 a b c a b c a b c a b c a b a b a b b a 例题:

例1:已知直角三角形的两边,利用勾股定理求第三边。 (1)在Rt △ABC 中,∠C=90° ①若a=5,b=12,则c=___________; ②若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。 (2)如果直角三角形的两直角边长分别为1n 2 -,2n (n>1),那么它的斜边长是( ) A 、2n B 、n+1 C 、n 2-1 D 、1n 2 + (3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( ) A.222a b c += B. 222a c b += C. 222c b a += D.以上都有可能 (4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。 (1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 (2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242 c m B 、36 2 c m C 、482 c m D 、602 c m 考点二:勾股定理的逆定理 (1)勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 (2)常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)…..(n 为正整数) (3)直角三角形的判定方法: ①如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 ②有一个角是直角的三角形是直角三角形。 ③两内角互余的三角形是直角三角形。 ④如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。 例题: 例1:勾股数的应用 (1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( ) A. 4,5,6 B. 2,3,4 C. 11,12,13 D. 8,15,17 (2)若线段a ,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶7 例2:利用勾股定理逆定理判断三角形的形状 (1)下面的三角形中:

勾股定理一对一专题讲义

知识点梳理 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面 积.四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中, 90 C ∠=?,则c ,b ,a ②知道直角三角形一边,可 得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。 ① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形; ② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a , b , c 为三边的三角形是锐角三角形; ③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222 ,2,m n mn m n -+c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理(讲义)

勾股定理 一、知识归纳 1.勾股定理 容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 += a b c 2.勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ∠=?,则c,b=,a= ?中,90 C ②知道直角三角形一边,可得另外两边之间的数量关系 二、题型 题型一:直接考查勾股定理 例1. 在ABC C ∠=? ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AB=,15 AC=,求BC的长 解: 题型二:应用勾股定理建立方程

2 1 E D C B A 例2.⑴在AB C ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,C D AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 例3.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长

A B C D E 例4.如图Rt ABC ?,90C ∠=?3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积 题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m

初二数学经典讲义 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条 边长求出第三条边长. 2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题. 3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂 勾股定理 知识要点】 要点一、勾股定理 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为 a b ,,斜边长为c ,那么222a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线 段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解 决问题的目的. (3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()2 22c a b ab =+-. 要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以. 要点三、勾股定理的作用 1. 已知直角三角形的任意两条边长,求第三边; 2. 用于解决带有平方关系的证明问题; 3. 利用勾股定理,作出长为 的线段. 【典型例题】 类型一、勾股定理的直接应用 1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)已知b =2,c =3,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C =90°,b =2,c =3, ∴ 2222325a c b =-=-; (2)设3a k =,5c k =. ∵ ∠C =90°,b =32, ∴ 222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴ 33824a k ==?=,55840c k ==?=. 类型二、勾股定理的证明

【勾股定理】教师讲义

【勾股定理】教师讲义 https://www.doczj.com/doc/f312992681.html,work Information Technology Company.2020YEAR

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探 索三 个半圆的面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、在直线l 上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高. S 3 S 2 S 1

勾股定理复习讲义

2 1E D C B A 勾股定理复习 班级______姓名_________ 一.知识归纳 1.勾股定理:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么____________, 2.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足________,那么这个三角形是_______,其中_____为斜边 如何判定一个三角形是否是直角三角形 (1)首先确定最大边(如c ).(2)验证2 c 与2 a +2 b 是否具有相等关系. 若2c =2a +2b ,则△ABC 是 ;若2c ≠2a +2 b ,则△ABC 不是 . 3.勾股数 ①能够构成直角三角形的三边长的三个_________称为勾股数,即222a b c +=中,a ,b ,c 为_____整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如_______;_______;________;7,24,25等 题型一:直接考查勾股定理 例1.(1)在ABC ?中,90C ∠=?,17AB =,15AC =,BC = (2)在ABC ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = (3)已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 (4)已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 2cm 练习1:求下列阴影部分的面积: (1) 正方形S = ; (2)长方形S = ; (3)半圆S = ; 2:如图2,已知△ABC 中,AB =17,AC =10, BC 边上的高AD =8,则边BC 的长为 例2.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 D C B A

勾股定理》教师讲义

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么a 2+b 2=c 2。公式的变形:a 2=c 2-b 2,b 2=c 2-a 2。 2、勾股定理的逆定理 如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2+b 2=c 2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a 2+b 2=c 2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13)(6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆. 2.如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的 面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是 S 1、S 2、S 3,则它们之间的关系是() =+S 2=+S 3<=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、在直线l 上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、 S S S S S S 341234、,则+++=_____________。 考点二:在直角三角形中,已知两边求第三边 S 3 S 2 S 1

初二数学勾股定理讲义经典

第一章 勾股定理 【知识点归纳】 123456?? ?? ?? ??? ?? ?? ?? ??? ? ?? ?? ??? ?????????? ?? ?? ?? ????? ?? ?? ?? ???1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状 3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题 勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理 (1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)结论: ①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。 ②有一个角是45°的直角三角形是等腰直角三角形。 ③直角三角形斜边的中线等于斜边的一半。 (3)勾股定理的验证

a b c a b c a b c a b c a b a b a b b a 例题: 例1:已知直角三角形的两边,利用勾股定理求第三边。 (1)在Rt △ABC 中,∠C=90° ①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________; ④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。 (2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2n B 、n+1 C 、n 2-1 D 、1n 2+ (3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( ) A.222a b c += B. 222a c b += C. 222c b a += D.以上都有可能 (4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。 (1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 (2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c m B 、36 2c m C 、482c m D 、602c m (3)已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 例3:探索勾股定理的证明

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________;__________;___________.2. 请你画出圆柱的侧面展开图. 3.读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 方案一:小聪准备用一根绳子沿着蚂蚁爬过的轨迹来进行测量,然后再借助绳子的长度来估计爬行的路程,如图1.方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,并参照小聪和小明的方法,动手测量一下这条线的长度.图1 图2

知识点睛 蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. 精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8cm,底 面半径等于2cm.在圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A 上升到点B,已知AB=5cm,树干的直径为4cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3)

八年级(上册)勾股定理复习资料全

八年级上册学生辅导材料--勾股定理 1、 勾股定理: 几何语言: 如图,在Rt △ABC 中,∠C= 90° 根据勾股定理:2 2 2 c b a =+ 1、在直角三角形中,若两直角边的长分别为3cm ,4cm ,则斜边长为_________ 斜边上的中线长为_____________,斜边上的高长为_________________ 2、在Rt △ABC中, AB=c , BC=a , AC =b ,,∠C=90°,(要求画出草图) ①已知a=5,b=12,求c ? ②已知a=15,c=25,求b ? ③若a ∶b=3∶4,c=10求ABC S ?? 3、如图,从电杆离地面5米处向地面拉一条7米长的钢缆, 求地面钢缆固定点A 到电杆底部B 的距离. 4、一直角三角形的三边分别为2、3、x ,那么以x 为边长的正方形的面积为 ( ) A 、13 B 、5 C 、13或5 D 、无法确定 5、下图由4个等腰直角三角形组成,其中第1个直角三角形腰长为1cm ,求第4个直角三角形斜边长 度是 cm 练习: 6、正方形的面积是4,则它的对角线长是( ) A 、2 B 、2 C 、22 D 、4 7、如图,在△ABC 中,AD ⊥BC 于D ,AB=3,BD=2,DC=1,则AC=( ) A 、6 B 、6 C 、5 D 、4 8、如图,已知一根长8m 的竹杆在离地3m 处断裂,竹杆顶部 抵着地面,此时,顶部距底部有 m ; 9、如图所示,有一条小路穿过长方形的草地ABCD ,AB=60m,BC=84m,

AE=100m,?则这条小路的面积是多少? 10、如图,在海上观察所A,我边防海警发现正北6km 的B 处有一可疑船只正在向向8km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为40km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住? 2、勾股定理的逆定理:______________________________________________________________. 判断一个三角形是否为直角三角形 方法:(1)先确定最大边(如c ) (2)验证2 c 与2 2 b a +是否具有相等关系 (3)若2 c =2 2 b a +,则△ABC 是以∠C 为直角的直角三角形;若2 c ≠2 2 b a + 则△ABC 不是直角三角形。 勾股数: 满足2 2 b a +=2 c 的三个正整数,称为勾股数。 如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41 11、如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形: 从点A 出发画一条线段AB,使它的另一个端点B在格点上,且长度分别为 (1) 3 2; (2)25; (3) 10 (4)13 12. 在△ABC中,AB=2, BC=4, AC=23, ∠C =30°, 求∠B 的大小. 13. 如图,AD ⊥CD , AB=13,BC=12,CD=4,AD=3, 已知∠C AB=α,求∠B . 14、一个零件的形状如图所示,按规定这个零件中∠A 和∠DBC 都应为直角,工人师傅量得这个零件各边尺寸如图,请问这个零件符合要求吗? 8km C A B 6km

初中数学勾股定理教学教案上课讲义

初中数学勾股定理教 学教案

初中数学勾股定理教学教案 课题:探索勾股定理 一、教学设计: 勾股定理是数学中最重要的定理之一,它揭示了直角三角形中三条边之间的数量关系. 【教学目标】 知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程. 数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想. 解决问题:1.通过拼图活动,体验数学思维的严谨性,发展形象思维.2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果. 情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学习热情.2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神. 【教学重点与难点】 1、重点是探索和证明勾股定理. 2、难点是用拼图的方法证明勾股定理. 二、教学过程:

探索发现 归纳总结得出新知 (1)现在请你也观察一下,你 能有什么发现吗? (2)等腰直角三角形是特殊 的直角三角形,一般的直角三角形 是否也有这样的特点呢? (3)你们有新的结论吗? 教师引导学生总结: 等腰直角三角形的两条直角边 平方的和等于斜边的平方. 在独立探究的基础上,学生分 组交流.教师参与小组活动,指 导、倾听学生交流.针对不同认识 水平的学生,引导其用不同的方法 得出大正方形的面积. 教师多媒体展示: 2002年在北京召开了第24届国 际数学家大会,它是最高水平的全 球性数学科学学术会议,被誉为数 学界的“奥运会”.这就是本届大会 的会徽的图案. 提问:你见过这个图案吗? 教师作补充说明:这个图案是 我国汉代数学家赵爽在证明勾股定 理时用到的,被称为“赵爽弦图”是 不是所有的直角三角形都有这样的 并观察图片,分 组交流讨论. 每组派代表分别 自己总结的观 点,在教师的引 导下,慢慢发现 能否将三个正方 形面积的关系转 化为直角三角形 三条边之间的关 系,并用自己的 语言叙述出来

新北师大版八年级数学上册勾股定理专题训练优质讲义

勾股定理 本章常用知识点: 1、勾股定理:直角三角形两直角边的 等于斜边的 。如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。 2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。 常见勾股数有: 3、常见平方数: 121112=; 144122=; 16913 2=; 196142=; 225152 =;256162= 289172=; 324182=; 361192=; 400202=;441212 =; 484222= 529232=; 576242=; 625252=; 676262=;729272= 专题归类: 专题一、勾股定理与面积 1、、在Rt ▲ABC 中,∠C=?90,a=5,c=3.,则Rt ▲ABC 的面积S= 。 2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。 3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为 4、在直线l 上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。 5、三条边分别是5,12,13的三角形的面积是 。 6、如果一个三角形的三边长分别为a,b,c 且满足:a 2 +b 2 +c 2 +50=6a+8b+10c,则这个三角形的面积为 。 7、如图1,?=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长? l 3 21 S 4 S 3 S 2S 1

勾股定理和两点间的距离公式讲义

学习必备 欢迎下载 泽仕学堂学科教师辅导讲义 学员姓名:丁鹏程 辅导科目:数学 年级:初二 学科教师:张先安 授课日期及时段 课 题 勾股定理和两点间的距离公式 重点、难点、考点 1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边 2.运用勾股定理的逆定理,判断直角三角形 . . 1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边 . 2.勾股定理的应用 . 学习目标 3.会运用勾股定理的逆定理,判断直角三角形 . 教学内容 1.勾股定理: (1)直角三角形两直角边的 ______和等于 _______ 的平方. 就是说, 对于任意的直角三角形, 如果它的两条直角边分别为 a 、 b ,斜边为 c ,那么一定有: ———————————— .这就是勾股定理. 2.勾股定理逆定理 “若三角形的两条边的平方和等于第三边的平方,则这个三角形为 ________. ”这一命题是勾股定理的逆定理 .它可以帮 助我们判断三角形的形状 . 3.勾股定理的作用: (1)已知直角三角形的两边,求第三边; (2)在数轴上作出表示 n ( n 为正整数)的点. (3)判断三角形的形状 4.两点间的距离公式 平面直角坐标系中,两点间的距离公式为 d ( x 1 x 2 ) 2 ( y 1 y 2 ) 2 。 知识点和例题讲解 一、勾股定理 直角三角形的两条直角边的平方和等于斜边的平方。用字母表示: a 2 b 2 c 2 A ABC 中, AD ⊥BC , AB=3 , BD=2 , DC=1. 求 AC 的长度。 例 1、如图所示,已知在△ B D C B D 练习:( 1)如图,已知在△ ABC 中,∠ACB=90 °,CD ⊥AB 于 D ,如果∠ BCD=30 °, BD=3 ,求 AD 、 AC 、 CD 的长。 A C

八年级数学勾股定理讲义全

【考纲解读】 1.掌握勾股定理的含义; 2.理解勾股数,并且会熟练地运用勾股数; 3.能够根据勾股定理,解决实际问题。 【考点梳理】 考点1:勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)勾股定理的表示:如果直角三角形的两直角边分别为a ,b , 斜边为c ,那么222a b c += (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 考点2:勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 考点3:勾股数 (1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。 (2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。 考点4:勾股定理的应用 (1)已知直角三角形的任意两边长,求第三边。在A B C ?中,90C ∠=?,则c , b ,a ; (2)已知直角三角形一边,可得另外两边之间的数量关系; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

(3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。 【例题讲解】 例1:如图字母B所代表的正方形的面积是() A.12 B.13 C.144 D.194 例2:下列由线段a,b,c组成的三角形不是直角三角形的是() A.a=3,b=4,c=5 B.a=2,b=3,c= C.a=12,b=10,c=20 D.a=5,b=13,c=12 例3:三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是() A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形 例4:如图,有两棵树,一棵高10米,另一棵高5米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行() A.8米B.10米C.13米 D.14米 例5:如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是() A.9 B.10 C.D. 例6:如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的点C有个. 【课堂检测】 1.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于() A.2 B.C.D. 2.在ABC中,∠C=90°,若AC=3,BC=4,则AB=() A.B.5 C.D.7 3.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是() A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3 C.a2=c2﹣b2D.a:b:c=3:4:6

《勾股定理》全章复习与巩固基础-教师讲义

中 正 教 育 教 师 辅 导 讲 义 年 级: 八年级 课 时 数:3 学员姓名: 辅导科目: 数学 学科教师: 课程主题 《勾股定理》全章复习与巩固 基础 授课类型 T 课本同步 C 专题辅导 T 应用能力提升 授课日期时段 年 月 日 段( :00-- :00) 学习目标 1.了解勾股定理的历史,掌握勾股定理的证明方法; 2.理解并掌握勾股定理及逆定理的内容; 3.能应用勾股定理及逆定理解决有关的实际问题. 教学内容 【知识网络】 要点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222 a b c +=) 2.勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是: (1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题; (3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用. 要点二、勾股定理的逆定理 1.勾股定理的逆定理 如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.

应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为c ; (2)验证:22a b +与2c 是否具有相等关系: 若222a b c +=,则△ABC 是以∠C 为90°的直角三角形; 若222a b c +>时,△ABC 是锐角三角形; 若222 a b c +<时,△ABC 是钝角三角形. 2.勾股数 满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形. 要点诠释: 常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. 如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数; 2.较长的直角边与对应斜边相差1. 3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等) 要点三、勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 1、已知直角三角形的两边长分别为6和8,求第三边的平方长. 解:设第三边为x . 当x 为斜边时,由勾股定理得22268100x =+=. 当x 为直角边时,由勾股定理,得22268x +=228x =. 所以这个三角形的第三边的平方为100或28. 【变式】在△ABC 中,AB =15,AC =13,高AD =12.求△ABC 的周长. 解:在Rt △ABD 和Rt △ACD 中,由勾股定理,得22222151281BD AB AD =-=-=. ∴ 9BD =.同理22222131225CD AC AD =-=-=. ∴ 5CD =. ①当∠ACB >90°时,BC =BD -CD =9-5=4. ∴ △ABC 的周长为:AB +BC +CA =15+4+13=32. ②当∠ACB <90°时,BC =BD +CD =9+5=14. ∴ △ABC 的周长为:AB +BC +CA =15+14+13=42. 综上所述:△ABC 的周长为32或42. 类型二、勾股定理及逆定理的综合应用

人教版八年级数学下册 期末复习 勾股定理 讲义

, ( ( 八年级下册期末复习(二) 勾股定理考点梳理 考点一:勾股定理的内容 勾股定理:如果直角三角形的两条直角边长分别为 a , b ,斜边长为 c ,那么 a 2 + b 2 = c 2 . 例题 如果直角三角形的两条直角边长为 a , b ,则斜边 c = __________ 考点二:勾股定理的证明 例题 1 我国 3 世纪汉代的赵爽是如何证明勾股定理的? 例题 2 古希腊数学家毕达哥拉斯是如何证明勾股定理的? 例题 3 学习美国第 20 任总统詹姆斯 加菲尔德的证法并完成练习. 考点三:“赵爽弦图” “赵爽弦图”是我国古代数学的骄傲,它通过对图形的切割、拼接,巧妙地利用面 积关系证明了勾股定理,表现了我国古人对数学的钻研精神和聪明才智,这个图案还被 选为 2002 年在北京召开的国际数学家大会的会徽.下面看一道典例: 如图是用4个全等的直角三角形与一个小正方形镶嵌而成的正方形图案,已知大正方形的 面积为49, 小正方形的面积为4,若用x, y 表示直角三角形的两条直角边(x > y ) 下列四个说法: 1)x 2 + y 2 = 49; (2)x - y = 2; (3)2 x y + 4 = 49; (4)x + y = 9.其中正确的是 ______________ . 练习 1 ) 大正方形的面积是13,小正方 形的面积是1,则a 2 + b 2 =

若S+S+S=10,则S=_______. 1232 考点四:利用勾股定理解直角三角形 例题1已知一个直角三角形的两条直角边的长分别为3和4,则第三边长为_____. 练习(1)求图中直角三角形中未知边的长度.a=____;b=____;c=_____. (2)如图,正方形ABCD中,∠AEB=90?,AE=6,BE=8,则涂色部分的面 积为_______.

勾股定理(讲义)

勾股定理 一、知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=?,则c ,b =,a = ②知道直角三角形一边,可得另外两边之间的数量关系 二、题型 题型一:直接考查勾股定理 例1. 在ABC ?中,90C ∠=? ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 解: 题型二:应用勾股定理建立方程 例2.⑴在ABC ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为

2 1 E D C B A A B C D E 例3.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 例4.如图Rt ABC ?,90C ∠=?3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积 题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m 三、勾股定理的逆定理知识归纳 1. 勾股定理的逆定理: 如果三角形的三边长a ,b ,c 有下面关系:a 2 +b 2 =c 2 ,那么这个三角形是直角三角形,其中c 为斜边。 2. 常用的平方数 112 =_______,122 =_______,132 =_______,142 =_______,152 =_______,162 =_______,172 =_______,182 =_______,192 =_______,202 =_______,252 =_______. 注意.如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中

相关主题
文本预览
相关文档 最新文档